期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Lessons from expanded potential of embryonic stem cells:Moving toward totipotency 被引量:2
1
作者 Rongrong Le Yixin Huang +1 位作者 Anqi Zhao Shaorong Gao 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2020年第3期123-130,共8页
Embryonic stem cells possess fascinating capacity of self-renewal and developmental potential,leading to significant progress in understanding the molecular basis of pluripotency,disease modeling,and reprogramming tec... Embryonic stem cells possess fascinating capacity of self-renewal and developmental potential,leading to significant progress in understanding the molecular basis of pluripotency,disease modeling,and reprogramming technology.Recently,2-cell-like embryonic stem cells(ESCs)and expanded potential stem cells or extended pluripotent stem cells(EPSCs)generated from early-cleavage embryos display some features of totipotent embryos.These cell lines provide valuable in vitro models to study underlying principles of totipotency,cell plasticity,and lineage segregation.In this review,we summarize the current progress in this filed and highlight the application potentials of these cells in the future. 展开更多
关键词 2C-like ESC EPSC MERVL Zscan4 totipotency
原文传递
Plant cell totipotency: Insights into cellular reprogramming 被引量:2
2
作者 Ying Hua Su Li Ping Tang +1 位作者 Xiang Yu Zhao Xian Sheng Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第1期228-240,共13页
Plant cells have a powerful capacity in their propagation to adapt to environmental change, given that a single plant cell can give rise to a whole plant via somatic embryogenesis without the need for fertilization. T... Plant cells have a powerful capacity in their propagation to adapt to environmental change, given that a single plant cell can give rise to a whole plant via somatic embryogenesis without the need for fertilization. The reprogramming of somatic cells into totipotent cells is a critical step in somatic embryogenesis. This process can be induced by stimuli such as plant hormones, transcriptional regulators and stress. Here, we review current knowledge on how the identity of totipotent cells is determined and the stimuli required for reprogramming of somatic cells into totipotent cells. We highlight key molecular regulators and associated networks that control cell fate transition from somatic to totipotent cells. Finally,we pose several outstanding questions that should be addressed to enhance our understanding of the mechanisms underlying plant cell totipotency. 展开更多
关键词 cell reprogramming plant cell totipotency somatic embryogenesis totipotent cell
原文传递
Decreased morphogenetic potential in peach palm stem-like cells in long-term in vitro conditions
3
作者 Erika Mendes Graner Gilvano Ebling Brondani +2 位作者 Cristina Vieira de Almeida Katherine Derlene Batagin-Piotto Marcilio de Almeida 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第2期485-495,共11页
Peach palm(Bactris gasipaes Kunth)has been micropropagated from pre-procambial cells that provide stem-like cell niches,(i.e.,pre-procambial cells),multipotent,pluripotent and totipotent for direct vascularization,adv... Peach palm(Bactris gasipaes Kunth)has been micropropagated from pre-procambial cells that provide stem-like cell niches,(i.e.,pre-procambial cells),multipotent,pluripotent and totipotent for direct vascularization,adventitious buds and somatic embryogenesis,respectively.The direct induction of adventitious buds and somatic embryogenesis reduces the frequency of mutations when compared to indirect morphogenesis.Long-term in vitro cultivation of perennial species such as peach palm cause the clones to age and deteriorate;however,the consequences for morphogenesis potential are not fully clear.The morphogenic potential of peach palm clones established and in vitro cultivated for 8 years(regeneration of adventitious buds without callus formation)was investigated in leaves,roots and stem bases using histological and histochemical analyses.Data from long-term cultures(8-years-old)was compared to data from short-term cultures(1-year-old).Morphogenic pathways monitoring for direct induction of somatic embryos and adventitious buds revealed a strong morphogenic reduction potential in the pre-procambial cells,parenchyma cells in the proximal region of stem bases,and external cells of leaf sheaths.Initial cells of shoot apical meristems and pre-procambial cells commit cell reprogramming to the undifferentiated state and subsequent acquisition of cellular competence.These results are applicable in the micropropagation of peach palm,with consideration to obtaining clones and their long-term in vitro culture. 展开更多
关键词 Micropropagation MULTIPOTENCY PLURIPOTENCY totipotency Pre-procambial cells Peach palm Bactris gasipaes
下载PDF
Highly efficient generation of blastocyst-like structures from spliceosomes-repressed mouse totipotent blastomere-like cells 被引量:1
4
作者 Pengfei Zhang Xuzhao Zhai +3 位作者 Boyan Huang Shu Sun Wen Jing Wang Man Zhang 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第3期423-435,共13页
Mammalian embryogenesis begins with a totipotent zygote.Blastocyst-like structures can be captured by aggregated cells with extended pluripotent properties in a three-dimensional(3D)culture system.However,the efficien... Mammalian embryogenesis begins with a totipotent zygote.Blastocyst-like structures can be captured by aggregated cells with extended pluripotent properties in a three-dimensional(3D)culture system.However,the efficiency of generating blastoids is low,and it remains unclear whether other reported totipotent-like stem cells retain a similar capacity.In this study,we demonstrated that spliceosomal repression-induced totipotent blastomere-like cells(TBLCs)form blastocyst-like structures within around 80%of all microwells.In addition,we generated blastoids initiating from a single TBLC.TBLC-blastoids express specific markers of constituent cell lineages of a blastocyst and resemble blastocyst in cell-lineage allocation.Moreover,singlecell RNA sequencing revealed that TBLC-blastoids share a similar transcriptional profile to natural embryos,albeit composed of fewer primitive endoderm-like cells.Furthermore,TBLC-blastoids can develop beyond the implantation stage in vitro and induce decidualization in vivo.In summary,our findings provided an alternative cell type to efficiently generate blastoids for the study of early mouse embryogenesis. 展开更多
关键词 blastoids TBLCs early embryogenesis totipotent
原文传递
The giant panda (Ailuropoda melanoleuca) somatic nucleus can dedifferentiate in rabbit ooplasm and support early development of the reconstructed egg 被引量:22
5
作者 陈大元 孙青原 +10 位作者 刘冀珑 李光鹏 廉莉 王敏康 韩之明 宋祥芬 李劲松 孙强 陈玉村 张亚平 丁波 《Science China(Life Sciences)》 SCIE CAS 1999年第4期346-353,共8页
The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them... The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the best, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastoeyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA ( 展开更多
关键词 giant panda RABBIT INTERSPECIES doning DEDIFFERENTIATION totipotency.
原文传递
Role of Oct4 in the early embryo development 被引量:1
6
作者 Guangming Wu Hans R Schöler 《Cell Regeneration》 2014年第1期50-59,共10页
Oct4 is a key component of the pluripotency regulatory network,and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells(ESCs)or their differentiati... Oct4 is a key component of the pluripotency regulatory network,and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells(ESCs)or their differentiation into trophoblast.Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development.However,the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected,and that these embryos could complete full-term development without any obvious defect.These results indicate that Oct4 is not essential for the initiation of pluripotency,in contrast to its critical role in maintaining pluripotency.This conclusion is further supported by the formation of Oct4-GFP–and Nanog-expressing inner cell masses(ICMs)in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes. 展开更多
关键词 OCT4 Oct4B totipotency PLURIPOTENCY EMBRYO DEVELOPMENT
原文传递
Rif1 interacts with non-canonical polycomb repressive complex PRC1.6 to regulate mouse embryonic stem cells fate potential 被引量:1
7
作者 Lu Li Pishun Li +9 位作者 Jiale Chen Li Li Yunfan Shen Yangzixuan Zhu Jiayi Liu Lu Lv Song Mao Fang Chen Guang Hu Kai Yuan 《Cell Regeneration》 2022年第1期246-266,共21页
Mouse embryonic stem cells(mESCs)cycle in and out of a transient 2-cell(2C)-like totipotent state,driven by a com-plex genetic circuit involves both the coding and repetitive sections of the genome.While a vast array ... Mouse embryonic stem cells(mESCs)cycle in and out of a transient 2-cell(2C)-like totipotent state,driven by a com-plex genetic circuit involves both the coding and repetitive sections of the genome.While a vast array of regulators,including the multi-functional protein Rif1,has been reported to influence the switch of fate potential,how they act in concert to achieve this cellular plasticity remains elusive.Here,by modularizing the known totipotency regulatory factors,we identify an unprecedented functional connection between Rif1 and the non-canonical polycomb repres-sive complex PRC1.6.Downregulation of the expression of either Rif1 or PRC1.6 subunits imposes similar impacts on the transcriptome of mESCs.The LacO-LacI induced ectopic colocalization assay detects a specific interaction between Rif1 and Pcgf6,bolstering the intactness of the PRC1.6 complex.Chromatin immunoprecipitation followed by sequencing(ChIP-seq)analysis further reveals that Rif1 is required for the accurate targeting of Pcgf6 to a group of genomic loci encompassing many genes involved in the regulation of the 2C-like state.Depletion of Rif1 or Pcgf6 not only activates 2C genes such as Zscan4 and Zfp352,but also derepresses a group of the endogenous retroviral element MERVL,a key marker for totipotency.Collectively,our findings discover that Rif1 can serve as a novel auxiliary component in the PRC1.6 complex to restrain the genetic circuit underlying totipotent fate potential,shedding new mechanistic insights into its function in regulating the cellular plasticity of embryonic stem cells. 展开更多
关键词 2C-like totipotency MERVL Rif1 PRC1.6
原文传递
Derivation of stem cells with totipotent features in mice and humans
8
《Science Foundation in China》 CAS 2017年第2期7-7,共1页
Subject Code:C07 With the support of the National Natural Science Foundation of China,a research group led by Prof.Deng Hongkui(邓宏魁)from Peking University,in collaboration with researchers from the Salk Institute a... Subject Code:C07 With the support of the National Natural Science Foundation of China,a research group led by Prof.Deng Hongkui(邓宏魁)from Peking University,in collaboration with researchers from the Salk Institute and Peking University People’s Hospital,demonstrates that the developmental potentials of stem cell 展开更多
关键词 邓宏魁 Derivation of stem cells with totipotent features in mice and humans STEM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部