Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus...Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus affecting the propagated single event transient pulsewidths in circuits. The trends of charge collected by the drain of a positive channel metal-oxide semiconductor (PMOS) and an N metal-oxide semiconductor (NMOS) are opposite as the substrate doping increases. The PMOS source will inject carriers after strike and the amount of charge injected will irlcrease as the substrate doping increases, whereas the source of the NMOS will mainly collect carriers and the source of the NMOS can also inject electrons when the substrate doping is light enough. Additionally, it indicates that substrate doping mainly affects the bipolar amplification component of a single-event transient current, and has little effect on the drift and diffusion. The change in substrate doping has a much greater effect on PMOS than on NMOS.展开更多
The two-dimensional transient response of an imperfect bonded circular lined pipeline lying in an elastic infinite medium is investigated.Imperfect boundary conditions between the surrounding elastic rock and the tunn...The two-dimensional transient response of an imperfect bonded circular lined pipeline lying in an elastic infinite medium is investigated.Imperfect boundary conditions between the surrounding elastic rock and the tunnel are modelled with a two-linear-spring design.The novelty of the manuscript consists in studying at the same time transient regimes and imperfect bonded interfaces for simulating the dynamic response of a tunnel embedded in an elastic infinite rock.Wave propagation fields in tunnel and rock are expressed in terms of infinite Bessel and Hankel series.To solve the transient problem,the Laplace transform and the associated Durbin’s algorithm are performed.To exhibit the dynamic responses,influences of various parameters such as the quality of the interface conditions and the thickness of the lining are presented.The dynamic hoop stresses and the solid displacements of both the tunnel and the rock are also proposed.展开更多
The transient wave propagation in the finite rectangular Mindlin plate is investi- gated by the analytical and experimental methods. The generalized ray method (GRM) which has been successfully applied to study the ...The transient wave propagation in the finite rectangular Mindlin plate is investi- gated by the analytical and experimental methods. The generalized ray method (GRM) which has been successfully applied to study the transient responses of beams, planar trusses, space frames and infinite layered media is extended to investigate the transient wave propagation and early short time transient response in finite Mindlin plate. Combining the wave solution, the shock source and the boundary conditions, the ray groups transmitted in the finite rectangular plate can be determined. Numerical simulations and experiments are performed and compared with each other. The results show that the transient wave propagation and early short time transient responses in the finite plate can be studied using the GRM. The early short time transient acceler- ations are very large for the finite plate subjected to the unit impulse, while the early short time transient displacements are very small. The early short time transient accelerations under the unit impulse are much larger than those under the unit step impulse. The thickness and material characteristics have remarkable effects on the early short time transient responses.展开更多
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)the National Natural Science Foundation of China (Grant Nos. 61076025 and 61006070)
文摘Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus affecting the propagated single event transient pulsewidths in circuits. The trends of charge collected by the drain of a positive channel metal-oxide semiconductor (PMOS) and an N metal-oxide semiconductor (NMOS) are opposite as the substrate doping increases. The PMOS source will inject carriers after strike and the amount of charge injected will irlcrease as the substrate doping increases, whereas the source of the NMOS will mainly collect carriers and the source of the NMOS can also inject electrons when the substrate doping is light enough. Additionally, it indicates that substrate doping mainly affects the bipolar amplification component of a single-event transient current, and has little effect on the drift and diffusion. The change in substrate doping has a much greater effect on PMOS than on NMOS.
文摘The two-dimensional transient response of an imperfect bonded circular lined pipeline lying in an elastic infinite medium is investigated.Imperfect boundary conditions between the surrounding elastic rock and the tunnel are modelled with a two-linear-spring design.The novelty of the manuscript consists in studying at the same time transient regimes and imperfect bonded interfaces for simulating the dynamic response of a tunnel embedded in an elastic infinite rock.Wave propagation fields in tunnel and rock are expressed in terms of infinite Bessel and Hankel series.To solve the transient problem,the Laplace transform and the associated Durbin’s algorithm are performed.To exhibit the dynamic responses,influences of various parameters such as the quality of the interface conditions and the thickness of the lining are presented.The dynamic hoop stresses and the solid displacements of both the tunnel and the rock are also proposed.
基金Project supported by the National Basic Research Program of China (No. 2011CB711102)the National Natural Science Foundation of China (Nos. 10672017, 11172084 and 11002045)
文摘The transient wave propagation in the finite rectangular Mindlin plate is investi- gated by the analytical and experimental methods. The generalized ray method (GRM) which has been successfully applied to study the transient responses of beams, planar trusses, space frames and infinite layered media is extended to investigate the transient wave propagation and early short time transient response in finite Mindlin plate. Combining the wave solution, the shock source and the boundary conditions, the ray groups transmitted in the finite rectangular plate can be determined. Numerical simulations and experiments are performed and compared with each other. The results show that the transient wave propagation and early short time transient responses in the finite plate can be studied using the GRM. The early short time transient acceler- ations are very large for the finite plate subjected to the unit impulse, while the early short time transient displacements are very small. The early short time transient accelerations under the unit impulse are much larger than those under the unit step impulse. The thickness and material characteristics have remarkable effects on the early short time transient responses.