With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process...With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.展开更多
Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st cent...Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st century, the Zhujiang(Pearl River) Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise. The numerical model results show that the average salt content, saltwater intrusion distance, and stratification will increase as the sea level rises. The changes of these parameters have obvious seasonal variations. The salt content in the Lingdingyang shows more increase in April and October(the transition periods). The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang. The result is just the opposite in Modaomen. The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang. The response results of transport processes to sea level rise demonstrate that:(1) The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing, but the increased stratification would weaken the vertical exchange. The impact of stratification changes overwhelms the impact of tidal changes. It would be more difficult for the surface water to reach the bottom.(2) The lengthways estuarine circulation would be strengthened. Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened. These phenomena are caused by the decrease of water surface slope(WWS) and the change of static pressure with the increase of water depth under sea level rise.展开更多
The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons ...The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.展开更多
Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ...Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.展开更多
Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results sh...Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results show that there exists a sudden temperature drop in the range of 1/4 of width distanced from the edge.When the plate is cooled by 25-56°C,the maximum inhomogeneous temperature distribution under all process conditions will appear in width direction.For the air-cooling transport process,the temperature control model for predicting the average temperature of the Mg plate after a predetermined time period can be established by modifying the Stefan-Boltzmann empirical equation.The model mainly depends on the plate specifications and air-cooling time.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho...The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.展开更多
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma...The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W0...The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W07,W18,and W19,have proven the occurrence of gas hydrate reservoirs in the inter-canyon area between canyons C11 and C12.Whereas,variations of the geomorphology and seismic facies analyzed by high-resolution 3D seismic data indicate that the gas hydrate-bearing sediments may form in different sedimentary processes.In the upper segment,a set of small-scale channels with obvious topographic lows can be identified,revealing fine-grained turbidites supplied from the shelf region during a very short-term sea-level lowstand.In the middle part,gas hydrate units at Site W07 showing mounded or undulation external configuration are interpreted as sliding sedimentary features,and those features caused by gravity destabilization were the main formative mechanism of gas hydrate-bearing sediments that were sourced from the upper segments.In contrast,for the canyon transition zone of lower segments between C11-C12 inter-canyon and C12 intra-canyon areas,where W18 and W19 sites are located,the gas hydratebearing sediments are deposited in the channelized feature in the middle to lower segment and slide erosive surface.Gas hydrate-bearing sediments of the lower segment were migrated through channelized features interconnecting with the middle to lower slope by gravity-driven flows.The majority of deposits tended to be furtherly moved by lateral migration via erosive surface created by sediment failed to intra-canyon area.The conclusion of this study may help better understand the interaction between the formation mechanism of gas hydrate-bearing sediments and the geomorphologic effects of inter-canyon areas.展开更多
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a...Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.展开更多
We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loadin...We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.展开更多
A case study on the transport process of agricultural diffuse P-pollutants was conducted in an experimental watershed locating in the north bank of Yuqiao Reservoir during 2001 and 2002. It was found that diversified ...A case study on the transport process of agricultural diffuse P-pollutants was conducted in an experimental watershed locating in the north bank of Yuqiao Reservoir during 2001 and 2002. It was found that diversified artificial and natural buffer/detention landscape structures distributing along the ephemeral stream channel in this watershed played an important role of pollutants removal on downstream water quality, especially they have control effect on the diffuse P-pollutants transport process. Surface flow velocity was reduced sharply after passing through these structures. During continuous runoff events, the removal rate of TSS, TP, TDP, DRP by the whole system were 66.7%, 60.7%, 48.4%, and 43.3%, respectively. During discontinuous runoff events, removal rate of pollutants by the whole system was higher due to there was no or little surface water and pollutants exported from the watershed, of which removal rate of pollutants all exceeded 99%. The statistical analysis results of runoff events(n=8) indicated that dry pond was the steadiest structure for controlling diffuse P-pollutants export.展开更多
To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simula...To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simulated annealing. Meanwhile, a three-dimensional mathematical model of aluminum holding furnace linings was developed and integrated with user-defined heat load distribution regime model. The optimal combination was as follows: side wall with 80 mm alumino-silicate fiber felts, 232 mm diatomite brick and 116 mm chamotte brick; top wall with 50 mm clay castables, 110 mm alumino-silicate fiber felts and 200 mm refractory concrete;and bottom wall with 232 mm high-alumina brick, 60 mm clay castables and 68 mm diatomite brick. Lining temperature from high to low was successively bottom wall, side wall, and top wall. Lining temperature gradient in increasing order of magnitude was refractory layer and insulation layer. It was indicated that the results of combination optimization of aluminum holding furnace linings were valid and feasible, and its thermo-physical mechanism and cost characteristics were reasonably revealed.展开更多
The performance and operation stability of proton exchange membrane fuel cells(PEMFCs)are closely related to the transportation of reactants and water management in the membrane electrode assembly(MEA)and flow field.I...The performance and operation stability of proton exchange membrane fuel cells(PEMFCs)are closely related to the transportation of reactants and water management in the membrane electrode assembly(MEA)and flow field.In this paper,a new three-dimensional wave parallel flow field(WPFF)in cathode was designed and analyzed throughout simulation studies and an experimental method.The experimental results show that the performance of PEMFC with WPFF outperforms that of PEMFC with straight parallel flow field(SPFF).Specifically,the peak power density increased by 13.45%for the PEMFC with WPFF as opposed to PEMFC with SPFF.In addition,the flow field with area of 11.56 cm^(2) was formed by the assembly of transparent end plate used for cathode and the traditional graphite plate used for anode.To understand the mechanism of the novel flow field improving the performance of PEMFC,a model of PEMFC was proposed based on the geometry,operating conditions and MEA parameters.The thickness of gas diffusion layers(GDL),catalytic layers(CL)and proton exchange membrane were measured by scanning electron microscope.The simulation result shows that compared with SPFF,the WPFF based PEMFC promote the oxygen transfer from flow channel to the surface of CL through GDL,and it was beneficial to remove the liquid water in the flow channel and the MEA.展开更多
Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long s...Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.展开更多
Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- ...Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.展开更多
Rivers often witness non-uniform bed load sedim ent transport. For a long tim e, non-uniform bed load transport has been assum ed to be at capacity regime determined exclusively by local flow. Yet whether the capacity...Rivers often witness non-uniform bed load sedim ent transport. For a long tim e, non-uniform bed load transport has been assum ed to be at capacity regime determined exclusively by local flow. Yet whether the capacity assumption for non-uniform bed load transport is justified remains poorly understood. Here, the relative time scale of non-uniform bed load transport is evaluated and non-capacity and capacity models are compared for both aggradation and degradation cases with observed data. As characterized by its relative time scale, the adaptation of non-uniform bed load to capacity regime should be fulfilled quickly. However, changes in the flow and sedim ent inputs from upstream or tributaries hinder the adaptation. Also, the adaptation to capacity regime is size dependent, the finer the sediment size the slower the adaptation is, and vice versa. It is shown that the capacity model may entail considerable errors compared to the non-capacity model. For modelling of non-uniform bed load, non-capacity modelling is recommended, in which the temporal and spatial scales required for adaptation are explicitly appreciated.展开更多
The Boltzmann local physical kinetics forecasts the destruction of SC regime because of the heat movement of particles. Then, the most fundamental distinction between a strange metal and a conventional metal is the ab...The Boltzmann local physical kinetics forecasts the destruction of SC regime because of the heat movement of particles. Then, the most fundamental distinction between a strange metal and a conventional metal is the absence of well-defined quasi-particles. Here, we show that the mentioned “quasi-particles” are solitons, which are formed as a result of self-organization of ionized matter. Shortcomings of the Boltzmann physical kinetics consist in the local description of the transport processes on the level of infinitely small physical volumes as elements of diagnostics. The non-local physics leads to the theory superconductivity including the high temperature diapason. The generalized non-local non-stationary London’s formula is derived.展开更多
Shortcomings of the Boltzmann physical kinetics and the Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger wave mechanics are considered. From the position of nonlocal p...Shortcomings of the Boltzmann physical kinetics and the Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger wave mechanics are considered. From the position of nonlocal physics, the Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger equation is a local equation;this fact leads to the great shortcomings of the linear Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger wave mechanics. Nonlocal nonlinear quantum mechanics is considered using the wave function terminology.展开更多
文摘With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.
基金The National Natural Science Foundation of China under contract No.51409286the Scientific Research Innovation Project of Jiangsu Province Ordinary University Graduate Student under contract No.CXZZ12_0223the Open Fund Project of Zhujiang River Water Resources Commission of the Zhujiang River Water Conservancy Science Research Institute under contract No.[2013]KJ02
文摘Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st century, the Zhujiang(Pearl River) Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise. The numerical model results show that the average salt content, saltwater intrusion distance, and stratification will increase as the sea level rises. The changes of these parameters have obvious seasonal variations. The salt content in the Lingdingyang shows more increase in April and October(the transition periods). The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang. The result is just the opposite in Modaomen. The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang. The response results of transport processes to sea level rise demonstrate that:(1) The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing, but the increased stratification would weaken the vertical exchange. The impact of stratification changes overwhelms the impact of tidal changes. It would be more difficult for the surface water to reach the bottom.(2) The lengthways estuarine circulation would be strengthened. Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened. These phenomena are caused by the decrease of water surface slope(WWS) and the change of static pressure with the increase of water depth under sea level rise.
基金Project supported by the National Instrumentation Program,China(Grant No.2011YQ040082)the National Natural Science Foundation of China(Grant Nos.61274081,51372205,and 51202197)+1 种基金the National 973 Project of China(Grant No.2011CB610400),the China Postdoctoral Science Foundation(Grant No.2014M550509)the 111 Project of China(Grant No.B08040)
文摘The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.
基金This work was supported by the National Natural Science Foundation of China(51706070 and U1910215)the Fundamental Research Funds for the Central Universities(2018ZD03,2020MS008 and 2020MS078).
文摘Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.
基金This work is financially supported by the National Key Research and Development Program of China(2016YFB0301104)the National Natural Science Foundation of China(51771043).
文摘Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results show that there exists a sudden temperature drop in the range of 1/4 of width distanced from the edge.When the plate is cooled by 25-56°C,the maximum inhomogeneous temperature distribution under all process conditions will appear in width direction.For the air-cooling transport process,the temperature control model for predicting the average temperature of the Mg plate after a predetermined time period can be established by modifying the Stefan-Boltzmann empirical equation.The model mainly depends on the plate specifications and air-cooling time.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574362,61210014,and 11374340the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission under Grant No Z151100003515001
文摘The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405118,11401448 and 11301403
文摘The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
基金Sopported by the Guangdong Province Marine Economic Development(Six Major Marine Industries)Special Fund Project(No.[2021]58)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP307)+2 种基金the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Nos.311020003,31102004)the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515012017,2019A1515010786)the“Fourteenth FiveYear Plan”Prospective Basic Major Scientific and Technological Projects of CNPC(No.2021DJ4901)。
文摘The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W07,W18,and W19,have proven the occurrence of gas hydrate reservoirs in the inter-canyon area between canyons C11 and C12.Whereas,variations of the geomorphology and seismic facies analyzed by high-resolution 3D seismic data indicate that the gas hydrate-bearing sediments may form in different sedimentary processes.In the upper segment,a set of small-scale channels with obvious topographic lows can be identified,revealing fine-grained turbidites supplied from the shelf region during a very short-term sea-level lowstand.In the middle part,gas hydrate units at Site W07 showing mounded or undulation external configuration are interpreted as sliding sedimentary features,and those features caused by gravity destabilization were the main formative mechanism of gas hydrate-bearing sediments that were sourced from the upper segments.In contrast,for the canyon transition zone of lower segments between C11-C12 inter-canyon and C12 intra-canyon areas,where W18 and W19 sites are located,the gas hydratebearing sediments are deposited in the channelized feature in the middle to lower segment and slide erosive surface.Gas hydrate-bearing sediments of the lower segment were migrated through channelized features interconnecting with the middle to lower slope by gravity-driven flows.The majority of deposits tended to be furtherly moved by lateral migration via erosive surface created by sediment failed to intra-canyon area.The conclusion of this study may help better understand the interaction between the formation mechanism of gas hydrate-bearing sediments and the geomorphologic effects of inter-canyon areas.
基金financially supported by the National Key Research and Development Program of China(2017YFD0200304)。
文摘Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92365208,11934002,and 11920101004)the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)+1 种基金the Science and Technology Major Project of Shanxi(Grant No.202101030201022)the Space Application System of China Manned Space Program。
文摘We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.
文摘A case study on the transport process of agricultural diffuse P-pollutants was conducted in an experimental watershed locating in the north bank of Yuqiao Reservoir during 2001 and 2002. It was found that diversified artificial and natural buffer/detention landscape structures distributing along the ephemeral stream channel in this watershed played an important role of pollutants removal on downstream water quality, especially they have control effect on the diffuse P-pollutants transport process. Surface flow velocity was reduced sharply after passing through these structures. During continuous runoff events, the removal rate of TSS, TP, TDP, DRP by the whole system were 66.7%, 60.7%, 48.4%, and 43.3%, respectively. During discontinuous runoff events, removal rate of pollutants by the whole system was higher due to there was no or little surface water and pollutants exported from the watershed, of which removal rate of pollutants all exceeded 99%. The statistical analysis results of runoff events(n=8) indicated that dry pond was the steadiest structure for controlling diffuse P-pollutants export.
基金Supported by the National Natural Science Foundation of China(51306001)the Natural Science Foundation of Anhui Province(1408085QG138)+1 种基金the Natural Science Foundation of Anhui Technology University(QZ201303,QS201304)the Student Research Training Program of Anhui University of Technology(AH201310360120)
文摘To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simulated annealing. Meanwhile, a three-dimensional mathematical model of aluminum holding furnace linings was developed and integrated with user-defined heat load distribution regime model. The optimal combination was as follows: side wall with 80 mm alumino-silicate fiber felts, 232 mm diatomite brick and 116 mm chamotte brick; top wall with 50 mm clay castables, 110 mm alumino-silicate fiber felts and 200 mm refractory concrete;and bottom wall with 232 mm high-alumina brick, 60 mm clay castables and 68 mm diatomite brick. Lining temperature from high to low was successively bottom wall, side wall, and top wall. Lining temperature gradient in increasing order of magnitude was refractory layer and insulation layer. It was indicated that the results of combination optimization of aluminum holding furnace linings were valid and feasible, and its thermo-physical mechanism and cost characteristics were reasonably revealed.
基金supported financially by National Key Research and Development Program of China(2017YFB0103001)。
文摘The performance and operation stability of proton exchange membrane fuel cells(PEMFCs)are closely related to the transportation of reactants and water management in the membrane electrode assembly(MEA)and flow field.In this paper,a new three-dimensional wave parallel flow field(WPFF)in cathode was designed and analyzed throughout simulation studies and an experimental method.The experimental results show that the performance of PEMFC with WPFF outperforms that of PEMFC with straight parallel flow field(SPFF).Specifically,the peak power density increased by 13.45%for the PEMFC with WPFF as opposed to PEMFC with SPFF.In addition,the flow field with area of 11.56 cm^(2) was formed by the assembly of transparent end plate used for cathode and the traditional graphite plate used for anode.To understand the mechanism of the novel flow field improving the performance of PEMFC,a model of PEMFC was proposed based on the geometry,operating conditions and MEA parameters.The thickness of gas diffusion layers(GDL),catalytic layers(CL)and proton exchange membrane were measured by scanning electron microscope.The simulation result shows that compared with SPFF,the WPFF based PEMFC promote the oxygen transfer from flow channel to the surface of CL through GDL,and it was beneficial to remove the liquid water in the flow channel and the MEA.
基金Supported by National Natural Science Foundation of China(Grant No.51405226).
文摘Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.
基金Supported by the Natural Science Foundation of China under Grant No.10774053the Natural Science Foundation of Hubei Province of China under Grant No.2007ABA035
文摘Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.
基金funded by the N atural Science Foundation of China (G rants No. 11172217, 51279144 and 11432015)Chinese Academy of Sciences (G rant No. KZZDEW -05-01-03)
文摘Rivers often witness non-uniform bed load sedim ent transport. For a long tim e, non-uniform bed load transport has been assum ed to be at capacity regime determined exclusively by local flow. Yet whether the capacity assumption for non-uniform bed load transport is justified remains poorly understood. Here, the relative time scale of non-uniform bed load transport is evaluated and non-capacity and capacity models are compared for both aggradation and degradation cases with observed data. As characterized by its relative time scale, the adaptation of non-uniform bed load to capacity regime should be fulfilled quickly. However, changes in the flow and sedim ent inputs from upstream or tributaries hinder the adaptation. Also, the adaptation to capacity regime is size dependent, the finer the sediment size the slower the adaptation is, and vice versa. It is shown that the capacity model may entail considerable errors compared to the non-capacity model. For modelling of non-uniform bed load, non-capacity modelling is recommended, in which the temporal and spatial scales required for adaptation are explicitly appreciated.
文摘The Boltzmann local physical kinetics forecasts the destruction of SC regime because of the heat movement of particles. Then, the most fundamental distinction between a strange metal and a conventional metal is the absence of well-defined quasi-particles. Here, we show that the mentioned “quasi-particles” are solitons, which are formed as a result of self-organization of ionized matter. Shortcomings of the Boltzmann physical kinetics consist in the local description of the transport processes on the level of infinitely small physical volumes as elements of diagnostics. The non-local physics leads to the theory superconductivity including the high temperature diapason. The generalized non-local non-stationary London’s formula is derived.
文摘Shortcomings of the Boltzmann physical kinetics and the Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger wave mechanics are considered. From the position of nonlocal physics, the Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger equation is a local equation;this fact leads to the great shortcomings of the linear Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger wave mechanics. Nonlocal nonlinear quantum mechanics is considered using the wave function terminology.