Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle...Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.展开更多
Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan...Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.展开更多
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en...AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.展开更多
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the...BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.展开更多
BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms rema...BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets.展开更多
BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen d...BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.展开更多
G4P3L3 was at 40 weeks of gestation who was admitted in active stage of labor with normal fetal heart rate. At 8 cm cervical dilatation she experienced spontaneous rupture of membrane with clear liquor. Cord prolapse ...G4P3L3 was at 40 weeks of gestation who was admitted in active stage of labor with normal fetal heart rate. At 8 cm cervical dilatation she experienced spontaneous rupture of membrane with clear liquor. Cord prolapse was detected and was prepared for caesarian section meanwhile she was kept in knee chest position and bladder was filled with normal saline 0.9%. 30 min before operation she was fully dilated with signs of Non reassuring fetal status, vacuum extraction was done to assist delivery as soon as possible. The APGAR score was 6 and 10 in the first and fifth minutes respectively. Mother and the baby were discharged the next day in good condition.展开更多
BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) ...BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.展开更多
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical...Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.展开更多
AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with the...AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.展开更多
AIM: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. METHODS: In a cell culture study of human umbilical cord blood ...AIM: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. METHODS: In a cell culture study of human umbilical cord blood stem cell (HUCBSC) differentiation, human umbilical cord blood mononuclear cells (HUCBMNC) were separated by density gradient centrifugation. Fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) and the supernatant of fetal liver were added in the inducing groups. Only FGF was added in the control group. The expansion and differentiation of HUCBMNC in each group were observed. Human alpha fetoprotein (AFP) and albumin (ALB) were detected by immunohistochemistry. In the animal experiments, the survival SD rats with acute hepatic injury after carbon tetrachloride (CCL4) injection 48 h were randomly divided into three groups. The rats in group A were treated with human umbilical cord blood serum. The rats in group B were treated with HUCBMNC transplantation. The rats in group C were treated with HUCBMNC transplantation followed by intraperitoneal cyclophosphamide for 7 d. The rats were killed at different time points after the treatment and the liver tissue was histopathologically studied and human AFP and ALB detected by immunohistochemistry. The human X inactive-specific transcript gene fragment in the liver tissue was amplified by PCR to find human DNA. RESULTS: The results of cell culture showed that adherent cells were stained negative for AFP or ALB in control group. However, the adherent cells in the inducing groups stained positive for AFP or ALB. The result of animal experiment showed that no human AFP or ALB positive cells present in the liver tissue of group A (control group). However, many human AFP or ALB positive cells were scattered around sinus hepaUcus and the central veins of hepatic Iobules and in the portal area in group B and group C after one month. The fragment of human X chromagene could be detected in the liver tissue of groups B and C, but not in group A.CONCLUSION: Under certain conditions HUCBSC can differentiate into liver cells in vivo and in vitro.展开更多
Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this st...Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury展开更多
Mesenchymal stem cell transplantation is a novel means of treating cerebral ischemia/reper- fusion, and can promote angiogenesis and neurological functional recovery. Acupuncture at Conception and Governor vessels als...Mesenchymal stem cell transplantation is a novel means of treating cerebral ischemia/reper- fusion, and can promote angiogenesis and neurological functional recovery. Acupuncture at Conception and Governor vessels also has positive effects as a treatment for cerebral ischemia/ reperfusion. Therefore, we hypothesized that electro-acupuncture at Conception and Governor vessels plus mesenchymal stem cell transplantation may have better therapeutic effects on the promotion of angiogenesis and recovery of neurological function than either treatment alone. In the present study, human umbilical cord blood-derived mesenchymal stem cells were isolated, cultured, identified and intracranially transplanted into the striatum and subcortex of rats at 24 hours following cerebral ischemia/reperfusion. Subsequently, rats were electro-acupunctured at Conception and Governor vessels at 24 hours after transplantation. Modified neurological severity scores and immunohistochemistry findings revealed that the combined interventions of electro-acupuncture and mesenchymal stem cell transplantation clearly improved neurological impairment and up-regulated vascular endothelial growth factor expression around the isch- emic focus. The combined intervention provided a better outcome than mesenchymal stem cell transplantation alone. These findings demonstrate that electro-acupuncture at Conception and Governor vessels and mesenchymal stem cell transplantation have synergetic effects on promot- ing neurological function recovery and angiogenesis in rats after cerebral ischemia/reperfusion.展开更多
In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis...In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 x 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.展开更多
Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promisin...Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.展开更多
BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferat...BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferation and differentiation of human neural stem cells (hNSCs) and human umbilical cord blood stem cells (hUCBSCs) following transplantation in ischemic brain tissue of rats, and to compare therapeutic outcomes between hNSCs and hUCBSCs. DESIGN, TIME AND SETTING: Randomized controlled animal studies were performed at the Experimental Animal Center of Nanjing Medical University and Central Laboratory of Second Affiliated Hospital of Nanjing Medical University of China from September 2008 to April 2009. MATERIALS: hNSCs were harvested from brain tissue of 10 13 week old fetuses following spontaneous abortion, and hUCBSCs were collected from umbilical cord blood of full-term newborns at the Second Affiliated Hospital of Nanjing Medical University of China. hNSCs and hUCBSCs were labeled by 5-bromodeoxyuridine (BrdU) prior to transplantation. METHODS: Rat models of cerebral ischemia were established by the suture method. A total of 60 healthy male Sprague Dawley rats aged 7-9 weeks were randomly assigned to hNSC transplantation, hUCBSC transplantation and control groups. The rat models in the hNSC transplantation, hUCBSC transplantation and control groups were infused with hNSC suspension, hUCBSC suspension and saline via the caudal vein, respectively. MAIN OUTCOME MEASURES: The distribution, proliferation and differentiation of hNSCs and hUCBSCs in ischemic brain tissue were observed using immunohistochemical methods. Neurological function in rats was assessed using the neurological severity score. RESULTS: The number of BrdU-positive cells was significantly greater in the hNSC transplantation group compared with hUCBSC transplantation group at 14 days following transplantation (P 〈 0.05) The number of BrdU-positive cells reached a peak at 28 days following transplantation. Nestin-positive, glial fibrillary acidic protein-positive, cyclic nucleotide 3' phosphohydrolase-positive and neuron specific enolase-positive cells were visible following transplantation. No significant difference was determined in the constituent ratio of various cells between hNSC and hUCBSC transplantation groups (P 〉 0.05). The neurological severity score was significantly decreased in rats at 21 days following transplantation (P 〈 0.05). No significant difference was detected in neurological severity score between hNSC and hUCBSC transplantation groups at various time points (P 〉 0.05). CONCLUSION: The transplanted hNSCs and hUCBSCs can migrate into ischemic brain tissue, proliferate and differentiate into neuron-like, astrocyte-like and oligodendrocyte-like cells, and improve neurological function in rats with cerebral ischemia.展开更多
Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells test...Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.展开更多
BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilica...BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilical cord mesenchymal stem cell (hUCMSC) transplantation achieves good therapeutic effects, but the mechanisms underlying nerve protection remain poorly understood. OBJECTIVE: To observe survival of transplanted hUCMSCs in SCIRI rat models and the influence on motor function in the hind limbs, to determine interleukin-8 expression and cellular apoptosis in spinal cord tissues, and to verify the hypothesis that hUCMSC transplantation exhibits protective effects on SCIRI. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Orthopedics in the First Affiliated Hospital of Soochow University, China between January 2007 and December 2008. MATERIALS: hUCMSCs were harvested from umbilical cord blood of healthy pregnant women after parturition in the Obstetrical Department of the First Affiliated Hospital of Soochow University, China. Rabbit anti-human BrdU monoclonal antibody was provided by DAKO, USA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit and enzyme-linked immunosorbent assay (ELISA) Kit were purchased by Wuhan Boster, China. METHODS: A total of 72 healthy, Wistar, adult rats were randomly assigned to three groups: sham-surgery, model, and transplantation, with 24 rats in each group. SCIRI was induced in the model and transplantation groups via the abdominal aorta block method. The infrarenal abdominal aorta was not blocked in the sham-surgery group. Prior to abdominal aorta occlusion, 0.2 03 mL bromodeoxyuridine (BrdU)-Iabeled hUCMSCs suspension (cell concentration 5 × 10 3/uL) was injected through the great saphenous vein of the hind limb, and an equal volume of physiological saline was administered to the model and sham-surgery groups. MAIN OUTCOME MEASURES: Pathological observation of rat spinal cord tissues was performed by hematoxylin-eosin staining at 6, 24, and 48 hours post-surgery. Immunohistochemistry was applied to determine hUCMSCs survival in the spinal cord. The amount of cellular apoptosis and interleukin-8 expression in spinal cord tissues was assayed utilizing the TUNEL and ELISA methods, respectively. Motor function in the hind limbs was evaluated according to Jacob's score. RESULTS: Numerous BrdU-positive cells were observed in spinal cord tissues from the transplantation group. The number of apoptotic cells and interleukin-8 levels significantly decreased in the transplantation group (P 〈 0.05), pathological injury was significantly ameliorated, and motor function scores significantly increased (P 〈 0.05) compared with the model group. CONCLUSION: Via vein transplantation, hUCMSCs were shown to reach and survive in the injury area. Results suggested that the transplanted hUCMSCs contributed to significantly improved pathological changes in the injured spinal cord, as well as motor function, following SCIRI. The protective mechanism correlated with inhibition of cellular apoptosis and reduced production of inflammatory mediators.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties.Although human bone marrow-derived MSCs(BM-MSCs)were the most widely...BACKGROUND Mesenchymal stem cells(MSCs)are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties.Although human bone marrow-derived MSCs(BM-MSCs)were the most widely used MSCs in cell therapy until recently,MSCs derived from human umbilical cords(UC-MSCs)have gained popularity as cell therapy material for their ethical and noninvasive collection.AIM To investigate the difference in mechanisms of the immunosuppressive effects of UC-MSCs and BM-MSCs.METHODS To analyze soluble factors expressed by MSCs,such as indolamine 2,3-dioxygenase,cyclooxygenase-2,prostaglandin E2 and interleukin(IL)-6,inflammatory environments in vitro were reconstituted with combinations of interferon-gamma(IFN-γ),tumor necrosis factor alpha and IL-1βor with IFN-γalone.Activated T cells were cocultured with MSCs treated with indomethacin and/or anti-IL-10.To assess the ability of MSCs to inhibit T helper 17 cells and induce regulatory T cells,induced T helper 17 cells were cocultured with MSCs treated with indomethacin or anti-IL-10.Xenogeneic graft-versus-host disease was induced in NOG mice(NOD/Shi-scid/IL-2Rγnull)and UC-MSCs or BM-MSCs were treated as cell therapies.RESULTS Our data demonstrated that BM-MSCs and UC-MSCs shared similar phenotypic characteristics and immunomodulation abilities.BM-MSCs expressed more indolamine 2,3-dioxygenase after cytokine stimulation with different combinations of IFN-γ,tumor necrosis factor alpha-αand IL-1βor IFN-γalone.UC-MSCs expressed more prostaglandin E2,IL-6,programmed death-ligand 1 and 2 in the in vitro inflammatory environment.Cyclooxygenase-2 and IL-10 were key factors in the immunomodulatory mechanisms of both MSCs.In addition,UC-MSCs inhibited more T helper 17 cells and induced more regulatory T cells than BM-MSCs.UC-MSCs and BM-MSCs exhibited similar effects on attenuating graft-versus-host disease.CONCLUSION UC-MSCs and BM-MSCs exert similar immunosuppressive effects with different mechanisms involved.These findings suggest that UC-MSCs have distinct immunoregulatory functions and may substitute BM-MBSCs in the field of cell therapy.展开更多
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
文摘Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
基金supported by the tenth batch of"3221"industrial innovation and scientific research projects in Bengbu City(beng talent[2020]No.8)the 2021 Bengbu Medical College Science and Technology Project[Natural Science,Project Number:2021byzd217].
文摘Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJXZDXK-016A)Science Foundation of Tianjin Eye Hospital(No.YKZD1901).
文摘AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.
基金Supported by Higher Education Commission,Islamabad,Pakistan grant,No.20-17590/NRPU/R&D/HEC/20212021.
文摘BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
基金Supported by China International Medical Foundation,No.Z-2019-41-2101-04China Postdoctoral Science Foundation Funded Project,No.2022M721957+1 种基金West China Psychiatric Association,No.WL2022102Guangdong Basic and Applied Basic Research Foundation,No.2023A1515110717.
文摘BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets.
基金Supported by the National Natural Science Foundation of China,No.81671439the Science and Technology Commission of Shanghai Municipality,No.21Y11906700 and No.20Y11907300the Medical Innovation Research Project of the Science and Technology Commission of Shanghai Municipality,No.22Y11906500。
文摘BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
文摘G4P3L3 was at 40 weeks of gestation who was admitted in active stage of labor with normal fetal heart rate. At 8 cm cervical dilatation she experienced spontaneous rupture of membrane with clear liquor. Cord prolapse was detected and was prepared for caesarian section meanwhile she was kept in knee chest position and bladder was filled with normal saline 0.9%. 30 min before operation she was fully dilated with signs of Non reassuring fetal status, vacuum extraction was done to assist delivery as soon as possible. The APGAR score was 6 and 10 in the first and fifth minutes respectively. Mother and the baby were discharged the next day in good condition.
基金the Korea Health R&D Project Granted by Ministry of Health and Welfare Republic of Korea, No. A080863
文摘BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.
基金This study was supported by a grant from National Natural Science Foundation of China(No.30271245)Hi-Tech Research and Development Program of China(863 Program)(No.2003AA205170)+1 种基金National Basic Research Program of China(973 Program)(No.G 1999054302)a grant from Bejing Gynecology and Obstetrics Hospital Affiliate of Capital University of Medical Sciences.
文摘Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.
基金Supported by Tianjin Science and Technology Project of China(13ZCZDSY01500)
文摘AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.
基金Supported by the National Natural Science Foundation of China, No. 39870651Natural Science Foundation of Hunan Province, No. 04JJ6048
文摘AIM: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. METHODS: In a cell culture study of human umbilical cord blood stem cell (HUCBSC) differentiation, human umbilical cord blood mononuclear cells (HUCBMNC) were separated by density gradient centrifugation. Fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) and the supernatant of fetal liver were added in the inducing groups. Only FGF was added in the control group. The expansion and differentiation of HUCBMNC in each group were observed. Human alpha fetoprotein (AFP) and albumin (ALB) were detected by immunohistochemistry. In the animal experiments, the survival SD rats with acute hepatic injury after carbon tetrachloride (CCL4) injection 48 h were randomly divided into three groups. The rats in group A were treated with human umbilical cord blood serum. The rats in group B were treated with HUCBMNC transplantation. The rats in group C were treated with HUCBMNC transplantation followed by intraperitoneal cyclophosphamide for 7 d. The rats were killed at different time points after the treatment and the liver tissue was histopathologically studied and human AFP and ALB detected by immunohistochemistry. The human X inactive-specific transcript gene fragment in the liver tissue was amplified by PCR to find human DNA. RESULTS: The results of cell culture showed that adherent cells were stained negative for AFP or ALB in control group. However, the adherent cells in the inducing groups stained positive for AFP or ALB. The result of animal experiment showed that no human AFP or ALB positive cells present in the liver tissue of group A (control group). However, many human AFP or ALB positive cells were scattered around sinus hepaUcus and the central veins of hepatic Iobules and in the portal area in group B and group C after one month. The fragment of human X chromagene could be detected in the liver tissue of groups B and C, but not in group A.CONCLUSION: Under certain conditions HUCBSC can differentiate into liver cells in vivo and in vitro.
文摘Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury
基金supported by the National Natural Science Foundation of China,No.81072877Key Laboratory Project of Condition and Platform Construction Plan of Shenzhen Scientific Research Fund,No.CXB201111250113AShenzhen Scientific and Technology Development Program,No.201203149
文摘Mesenchymal stem cell transplantation is a novel means of treating cerebral ischemia/reper- fusion, and can promote angiogenesis and neurological functional recovery. Acupuncture at Conception and Governor vessels also has positive effects as a treatment for cerebral ischemia/ reperfusion. Therefore, we hypothesized that electro-acupuncture at Conception and Governor vessels plus mesenchymal stem cell transplantation may have better therapeutic effects on the promotion of angiogenesis and recovery of neurological function than either treatment alone. In the present study, human umbilical cord blood-derived mesenchymal stem cells were isolated, cultured, identified and intracranially transplanted into the striatum and subcortex of rats at 24 hours following cerebral ischemia/reperfusion. Subsequently, rats were electro-acupunctured at Conception and Governor vessels at 24 hours after transplantation. Modified neurological severity scores and immunohistochemistry findings revealed that the combined interventions of electro-acupuncture and mesenchymal stem cell transplantation clearly improved neurological impairment and up-regulated vascular endothelial growth factor expression around the isch- emic focus. The combined intervention provided a better outcome than mesenchymal stem cell transplantation alone. These findings demonstrate that electro-acupuncture at Conception and Governor vessels and mesenchymal stem cell transplantation have synergetic effects on promot- ing neurological function recovery and angiogenesis in rats after cerebral ischemia/reperfusion.
基金the Science and Technology Foundation of Shenyang in China,No.F10-217-1-00
文摘In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 x 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.
基金supported by the National Key Research and Development Program of China,No.2017YFA0105403(to LMR)the Key Research and Development Program of Guangdong Province of China,No.2019B020236002(to LMR)+4 种基金The Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR0201006(to LMR)the National Natural Science Foundation of China,Nos.81772349(to BL),31470949(to BL)the Guangzhou Science and Technology Project of China,Nos.201704020221(to LMR),201707010115(to BL)the Natural Science Foundation of Guangdong Province of China,No.2017A030313594(to BL)the Medical Scientific Research Foundation of Guangdong Province of China,No.A2018547(to MP)
文摘Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.
文摘BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferation and differentiation of human neural stem cells (hNSCs) and human umbilical cord blood stem cells (hUCBSCs) following transplantation in ischemic brain tissue of rats, and to compare therapeutic outcomes between hNSCs and hUCBSCs. DESIGN, TIME AND SETTING: Randomized controlled animal studies were performed at the Experimental Animal Center of Nanjing Medical University and Central Laboratory of Second Affiliated Hospital of Nanjing Medical University of China from September 2008 to April 2009. MATERIALS: hNSCs were harvested from brain tissue of 10 13 week old fetuses following spontaneous abortion, and hUCBSCs were collected from umbilical cord blood of full-term newborns at the Second Affiliated Hospital of Nanjing Medical University of China. hNSCs and hUCBSCs were labeled by 5-bromodeoxyuridine (BrdU) prior to transplantation. METHODS: Rat models of cerebral ischemia were established by the suture method. A total of 60 healthy male Sprague Dawley rats aged 7-9 weeks were randomly assigned to hNSC transplantation, hUCBSC transplantation and control groups. The rat models in the hNSC transplantation, hUCBSC transplantation and control groups were infused with hNSC suspension, hUCBSC suspension and saline via the caudal vein, respectively. MAIN OUTCOME MEASURES: The distribution, proliferation and differentiation of hNSCs and hUCBSCs in ischemic brain tissue were observed using immunohistochemical methods. Neurological function in rats was assessed using the neurological severity score. RESULTS: The number of BrdU-positive cells was significantly greater in the hNSC transplantation group compared with hUCBSC transplantation group at 14 days following transplantation (P 〈 0.05) The number of BrdU-positive cells reached a peak at 28 days following transplantation. Nestin-positive, glial fibrillary acidic protein-positive, cyclic nucleotide 3' phosphohydrolase-positive and neuron specific enolase-positive cells were visible following transplantation. No significant difference was determined in the constituent ratio of various cells between hNSC and hUCBSC transplantation groups (P 〉 0.05). The neurological severity score was significantly decreased in rats at 21 days following transplantation (P 〈 0.05). No significant difference was detected in neurological severity score between hNSC and hUCBSC transplantation groups at various time points (P 〉 0.05). CONCLUSION: The transplanted hNSCs and hUCBSCs can migrate into ischemic brain tissue, proliferate and differentiate into neuron-like, astrocyte-like and oligodendrocyte-like cells, and improve neurological function in rats with cerebral ischemia.
基金the National Basic Research Program of China(973 Program),No. 2005CB522604
文摘Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.
文摘BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilical cord mesenchymal stem cell (hUCMSC) transplantation achieves good therapeutic effects, but the mechanisms underlying nerve protection remain poorly understood. OBJECTIVE: To observe survival of transplanted hUCMSCs in SCIRI rat models and the influence on motor function in the hind limbs, to determine interleukin-8 expression and cellular apoptosis in spinal cord tissues, and to verify the hypothesis that hUCMSC transplantation exhibits protective effects on SCIRI. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Orthopedics in the First Affiliated Hospital of Soochow University, China between January 2007 and December 2008. MATERIALS: hUCMSCs were harvested from umbilical cord blood of healthy pregnant women after parturition in the Obstetrical Department of the First Affiliated Hospital of Soochow University, China. Rabbit anti-human BrdU monoclonal antibody was provided by DAKO, USA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit and enzyme-linked immunosorbent assay (ELISA) Kit were purchased by Wuhan Boster, China. METHODS: A total of 72 healthy, Wistar, adult rats were randomly assigned to three groups: sham-surgery, model, and transplantation, with 24 rats in each group. SCIRI was induced in the model and transplantation groups via the abdominal aorta block method. The infrarenal abdominal aorta was not blocked in the sham-surgery group. Prior to abdominal aorta occlusion, 0.2 03 mL bromodeoxyuridine (BrdU)-Iabeled hUCMSCs suspension (cell concentration 5 × 10 3/uL) was injected through the great saphenous vein of the hind limb, and an equal volume of physiological saline was administered to the model and sham-surgery groups. MAIN OUTCOME MEASURES: Pathological observation of rat spinal cord tissues was performed by hematoxylin-eosin staining at 6, 24, and 48 hours post-surgery. Immunohistochemistry was applied to determine hUCMSCs survival in the spinal cord. The amount of cellular apoptosis and interleukin-8 expression in spinal cord tissues was assayed utilizing the TUNEL and ELISA methods, respectively. Motor function in the hind limbs was evaluated according to Jacob's score. RESULTS: Numerous BrdU-positive cells were observed in spinal cord tissues from the transplantation group. The number of apoptotic cells and interleukin-8 levels significantly decreased in the transplantation group (P 〈 0.05), pathological injury was significantly ameliorated, and motor function scores significantly increased (P 〈 0.05) compared with the model group. CONCLUSION: Via vein transplantation, hUCMSCs were shown to reach and survive in the injury area. Results suggested that the transplanted hUCMSCs contributed to significantly improved pathological changes in the injured spinal cord, as well as motor function, following SCIRI. The protective mechanism correlated with inhibition of cellular apoptosis and reduced production of inflammatory mediators.
基金Supported by Korean Health Technology R&D Project,No.HI16C2178.
文摘BACKGROUND Mesenchymal stem cells(MSCs)are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties.Although human bone marrow-derived MSCs(BM-MSCs)were the most widely used MSCs in cell therapy until recently,MSCs derived from human umbilical cords(UC-MSCs)have gained popularity as cell therapy material for their ethical and noninvasive collection.AIM To investigate the difference in mechanisms of the immunosuppressive effects of UC-MSCs and BM-MSCs.METHODS To analyze soluble factors expressed by MSCs,such as indolamine 2,3-dioxygenase,cyclooxygenase-2,prostaglandin E2 and interleukin(IL)-6,inflammatory environments in vitro were reconstituted with combinations of interferon-gamma(IFN-γ),tumor necrosis factor alpha and IL-1βor with IFN-γalone.Activated T cells were cocultured with MSCs treated with indomethacin and/or anti-IL-10.To assess the ability of MSCs to inhibit T helper 17 cells and induce regulatory T cells,induced T helper 17 cells were cocultured with MSCs treated with indomethacin or anti-IL-10.Xenogeneic graft-versus-host disease was induced in NOG mice(NOD/Shi-scid/IL-2Rγnull)and UC-MSCs or BM-MSCs were treated as cell therapies.RESULTS Our data demonstrated that BM-MSCs and UC-MSCs shared similar phenotypic characteristics and immunomodulation abilities.BM-MSCs expressed more indolamine 2,3-dioxygenase after cytokine stimulation with different combinations of IFN-γ,tumor necrosis factor alpha-αand IL-1βor IFN-γalone.UC-MSCs expressed more prostaglandin E2,IL-6,programmed death-ligand 1 and 2 in the in vitro inflammatory environment.Cyclooxygenase-2 and IL-10 were key factors in the immunomodulatory mechanisms of both MSCs.In addition,UC-MSCs inhibited more T helper 17 cells and induced more regulatory T cells than BM-MSCs.UC-MSCs and BM-MSCs exhibited similar effects on attenuating graft-versus-host disease.CONCLUSION UC-MSCs and BM-MSCs exert similar immunosuppressive effects with different mechanisms involved.These findings suggest that UC-MSCs have distinct immunoregulatory functions and may substitute BM-MBSCs in the field of cell therapy.