The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
The uptake of ammonium,nitrate,phosphorus,and potassium ions by roots is mediated by specific ion transporter or channel proteins,and protein phosphorylation regulation events occurring on these proteins and their reg...The uptake of ammonium,nitrate,phosphorus,and potassium ions by roots is mediated by specific ion transporter or channel proteins,and protein phosphorylation regulation events occurring on these proteins and their regulators determine their ultimate activity.Elucidating the mechanism by which protein phosphorylation modification regulates nutrient uptake will advance plant breeding for high nutrientuse efficiency.In this review,it is concluded that the root nutrient absorption system is composed of several,but not all,members of a specific ion transporter or channel family.Under nutrient-starvation conditions,protein phosphorylation-based regulation of these proteins and associated transcription factors increases ion transporter-or channel-mediated nutrient uptake capacity via direct function activity enhancement,allowing more protein trafficking to the plasma membrane,by strengthening the interaction of transporters and channels with partner proteins,by increasing their protein stability,and by transcriptional activation.Under excessive nutrient conditions,protein phosphorylation-based regulation suppresses nutrient uptake by reversing these processes.Strengthening phosphorylation regulation items that increase nutrient absorption and weakening phosphorylation modification items that are not conducive to nutrient absorption show potential as strategies for increasing nutrient use efficiency.展开更多
Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA...Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.展开更多
Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve...Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.展开更多
Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations ...Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations such as low uptake efficiency,insufficient production,and inhomogeneous performance undermine their potential.To address these issues,numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades.In this review,we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake.In addition,we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.展开更多
Introduction: COVID-19 vaccine uptake and acceptance have been a major global concern due to the prevalent misinformation and disinformation that has characterized the vaccine rollout worldwide. This study aimed to as...Introduction: COVID-19 vaccine uptake and acceptance have been a major global concern due to the prevalent misinformation and disinformation that has characterized the vaccine rollout worldwide. This study aimed to assess COVID-19 vaccine uptake and acceptance, and associated factors among selected community members in two states in southwestern Nigeria. Method: We conducted a cross-sectional study using a multistage sampling technique. Fifty catchment settlements of 10 health facilities in each of Oyo and Ogun States targeted for a COVID-19 infection prevention and control intervention were randomly selected. Four households were targeted per settlement. All households that refused access were replaced, to ensure a minimum of four households randomly selected per settlement. The primary household decision-maker was interviewed in each household. Information elicited included respondents’ sociodemographic characteristics, health history, knowledge, risk and benefit perception about the COVID-19 vaccine, vaccine uptake, and willingness to be vaccinated. The study was conducted from July–August 2021. Data were analyzed using SPSS IBM version 23. Result: Four hundred household decision-makers were surveyed in Oyo and Ogun states, after replacement. The mean age of the respondents was 43.0 ± 11.0 years. The majority, 346 (86.5%) had heard about COVID-19 vaccination, but only 47 (13.6%) had received a COVID-19 vaccination. Of the 299 respondents who reported not receiving a COVID-19 vaccination, 166 (55.5%) were willing to be vaccinated. In univariate analysis, respondents who were female had tertiary education, perceived that COVID-19 vaccines are free and accessible, perceived that COVID-19 vaccines have minimal side effects, and perceived higher benefits of COVID-19 vaccination had higher odds of being vaccinated. In contrast, younger respondents, respondents with higher knowledge scores on COVID-19 preventive measures, and with chronic illness had lower likelihoods of being vaccinated. In multivariate analysis, only the respondent’s age, perception score on COVID-19 vaccine benefits, knowledge score on IPC measures, and positive response on accessibility and safety were significant after adjusting for other factors. Conclusion: COVID-19 vaccine uptake rate as well as willingness to receive vaccination were low in the study setting. There is an urgent need for policymakers to embark on well-designed campaigns to address barriers to COVID-19 vaccination to increase vaccine uptake.展开更多
Introduction: Pregnant women are a highly vulnerable population for COVID-19 with increased risk of hospitalization, intensive-care unit admission, invasive ventilation support, and mortality. Objective: This study de...Introduction: Pregnant women are a highly vulnerable population for COVID-19 with increased risk of hospitalization, intensive-care unit admission, invasive ventilation support, and mortality. Objective: This study determined the socio-demographic and economic factors associated with the uptake of COVID-19 vaccine among pregnant women utilizing antenatal care services in Pumwani Maternity Hospital, Nairobi County-Kenya. Methods: The study was carried out from 15 June to 23 July 2023. Systematic sampling was used to select 302 women from whom data was collected through face-to-face interviews using a pre-tested semi-structured questionnaire. Data was analyzed using SPSS software in which bivariate and multivariate logistic regression analyses were done at a significance level of p Results: A total of 302 pregnant women participated in the study. Of these, 105 (34.8%) were aged between twenty-six (26) and thirty (30) years. The mean age of the women was 28.60 ± (SD = 5.297). The uptake of the COVID-19 vaccine was 41.1%. The common side effects reported to be associated with the vaccines were fever, headache, joint pain, vomiting and skin rash. Uptake of the COVID-19 vaccine was significantly associated with being married (AOR = 3.65, 95% CI: 0.62 - 1.80, p = 0.001), having a secondary level of education (AOR = 3.78, 95% CI: 0.99 - 2.88, p = 0.001) and being employed (COR = 2.66, 95% CI: 1.31 - 3.06, p = 0.001). Conclusion: COVID-19 vaccination uptake remains low among pregnant women in seeking ANC in Nairobi. The individual factors associated with the uptake of COVID-19 vaccine among pregnant Women at Pumwani maternity hospital in Nairobi County were being married, having secondary level of education and being employed. Integration of the COVID-19 vaccine with other routine vaccinations as per the national immunization program in Kenya and the enhancement of education regarding the safety and efficacy of the COVID-19 vaccine in pregnancy and breastfeeding and economic empowerment of women are recommended.展开更多
Background: Malaria in pregnancy causes maternal anemia, low birth weight, intrauterine growth retardation, and preterm deliveries. In malaria-endemic regions in Kenya, percentage of pregnant women hospitalized with m...Background: Malaria in pregnancy causes maternal anemia, low birth weight, intrauterine growth retardation, and preterm deliveries. In malaria-endemic regions in Kenya, percentage of pregnant women hospitalized with malaria reach up to 60%. WHO recommends at least three doses of sulphadoxine pyrimethamine for Intermittent Preventive Treatment of Malaria in Pregnancy (IPTp) antenatally. This study sought to ascertain the prevalence and individual-level factors influencing the uptake of IPTp-SP3+. Methods: A facility-based cross-sectional study at Busia County Referral Hospital. 384 mothers were consecutively sampled at the maternity unit during delivery. Semi-structured questionnaires were used to collect data. Odds ratio (OR) and adjusted OR were used to determine statistical significance of individual factors influencing uptake of three or more IPTp-SP. Results: 43.0% of participants took IPTp-SP3+. Individual factors that affected the uptake of IPTp-SP3+ included starting ANC visits in the first trimester (adjusted odds ratio (aOR) = 2.1, 95% CI: 1.23 – 3.67, p = 0.046), having more than four ANC visits (aOR = 3.1, 95% CI: 1.49 – 6.50, p = 0.002), having a higher monthly income (aOR = 2.6, 95% CI: 1.24 – 5.36, p = 0.012), being aware of the advantages of IPTp-SP medications (aOR = 3.7, 95% CI: 1.40 – 9.74, p = 0.008), and having a positive attitude toward ANC services (aOR = 3.2, 95% CI: 1.61 – 6.31, p = 0.001). Conclusion: Less than half of the pregnant mothers are complyingIPTp-SP3+. There should be aggressive efforts by the County and National Ministries of Health promoting initiation of ANC attendance early and attendance of all the recommended eight visits together with ensuring availability of the drugs.展开更多
Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yield...Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.展开更多
The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown o...The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system.展开更多
[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on th...[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.展开更多
[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying ...[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.展开更多
[Objective] The study aimed to confirm difference of nitrogen uptake and used efficiency with different nitrogen use efficiency for grain output (NUEg) types of indica rice.[Method] 88 and 122 conventional indica rice...[Objective] The study aimed to confirm difference of nitrogen uptake and used efficiency with different nitrogen use efficiency for grain output (NUEg) types of indica rice.[Method] 88 and 122 conventional indica rice cultivars were solution-cultured in 2001 and 2002, respectively. Dry matter weight (including root system, culm and sheath, leaves, panicle), nitrogen content of different organs, yield and its components were measured. The tested rice cultivars were classified into 6 types (i.e. A, B, C, D, E and F, A was the lowest, and F was the highest) based on their NUEg level by the MinSSw method.[Result](1)Difference of NUEg of the cultivars used in this study were very large; (2) No significant difference of N content at heading stage was observed among different NUEg types of indica rice. In the cultivars with higher NUEg, however, N content in leaf, stem-sheath and entire rice plant were lower at mature stage. (3)Cultivars with higher NUEg were characterized with lower N uptake before heading and at mature stage; (4) Cultivars with higher NUEg were characterized with higher N use efficiency in biomass production and harvest index. [Conclusion] The cultivars with higher NUEg showed lower N uptake and N content, while nitrogen use efficiency was higher.展开更多
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut...[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.展开更多
The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available pow...The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available powders are measured as (1.00±0.11)×10-4 for α-A1203, (1.66±0.23)×10-4 for MgO, (9.70±1.95)×10-5 for Fe203, and (5.22±0.9)×10-5 for SiO2. These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2. H2O2 can be destroyed on Fe2O3 surface and O2 is formed. The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.展开更多
Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and C...Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and CH4 uptake of a for-est soil were studied in laboratory by the method of orthogonal design. It was observed under laboratory conditions in this study that there were significant correlations between N2O emission rate, CH4 oxidation rate, soil pH and temperature. Nevertheless, N2O emission rate also showed a significant positive correlation with CH4 oxidation rate. The results suggested that pH and temperature were important factors controlling N2O emission and CH4 oxidation under this experiment conditions.展开更多
This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics impr...This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.展开更多
Under NaCl stress for 2 d, H+-ATPase activity increased, and H+-PPase activity decreased in the tonoplast of salt-tolerant barley ( Hordeum vulgare L. cv. 'Tanyin 2') roots. La3+ (1 mmol/L), an inhibitor of Ca...Under NaCl stress for 2 d, H+-ATPase activity increased, and H+-PPase activity decreased in the tonoplast of salt-tolerant barley ( Hordeum vulgare L. cv. 'Tanyin 2') roots. La3+ (1 mmol/L), an inhibitor of Ca2+ channel in plasma membrane, and EGTA (5 mmol/L), a Ca2+ chelator, inhibited this NaCl-induced increase in H+-ATPase activity but stimulated the H+-PPase activity. Treatment of barley roots with CaM antagonist (trifluoperazine, TFP, 20 mumol/L) also diminished the increase of H+-ATPase activity induced by NaCl. La3+, TFP or La3+ + TFP increased Na+ uptake and decreased K+ and Ca2+ uptake in barley roots under NaCl stress. These results suggested that the activation of tonoplast H+-ATPase and the regulation of Na+ and K+ uptake under NaCl stress may be related to Ca2+-CaM system.展开更多
Different application rates of controlled release nitrogen fertilizer (CRFN) were designed to evaluate their effects on the growth and root morphology of bitter gourd (Momordica charantia L.) seedlings, and thus d...Different application rates of controlled release nitrogen fertilizer (CRFN) were designed to evaluate their effects on the growth and root morphology of bitter gourd (Momordica charantia L.) seedlings, and thus determine the optimal nitrogen amount and suitable nitrogen content in substrate at seedling transplanting,, in com- parison with conventional fertilizer application. CRFN was applied at five levels, 0, 0.6, 1.2, 2.4 and 4.8 kg N/m3, and conventional fertilizer was applied at 0.6 kg N/m3 as control. Four replicates were included in each treatment. The results showed that 0.6-2.4 kg N/m3 CRFN provided sufficient N nutrient for bitter gourd, with higher shoot and root dry weights, root length and root surface area than control treat- ments. Correspondingly, the total inorganic nitrogen in substrate ranged from 99.3 to 162.5 mg/pot at seedling transplanting in these treatments. 1.2 kg N/m3 was proven to be the optimal CRFN rate. Compared with conventional nitrogen fertilizer applica- tion, 1.2 kg N/m3 CRFN in substrate increased the dry weight, nitrogen uptake and improved root morphology indices of seedlings, and more than 83.3 mg/pot inorgan- ic nitrogen could be carried with substrate at transplanting, revealing a potential to reduce N-deficient risk after rain and basal N input by continuous release of CRFN.展开更多
Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium up...Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.展开更多
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
基金supported by the Jiangsu Provincial DoubleInnovation Doctor Program(JSSCBS20221643)the Jiangsu Institute of Botany Talent Fund(JIBTF202210)+2 种基金the Program for the Young Innovative Talents of Jiangsu Vocational College of Agriculture and Forest(2021kj26)the National Natural Science Foundation of China(32101429)Natural Science Foundation of Jiangsu Province,China(BK20200288)。
文摘The uptake of ammonium,nitrate,phosphorus,and potassium ions by roots is mediated by specific ion transporter or channel proteins,and protein phosphorylation regulation events occurring on these proteins and their regulators determine their ultimate activity.Elucidating the mechanism by which protein phosphorylation modification regulates nutrient uptake will advance plant breeding for high nutrientuse efficiency.In this review,it is concluded that the root nutrient absorption system is composed of several,but not all,members of a specific ion transporter or channel family.Under nutrient-starvation conditions,protein phosphorylation-based regulation of these proteins and associated transcription factors increases ion transporter-or channel-mediated nutrient uptake capacity via direct function activity enhancement,allowing more protein trafficking to the plasma membrane,by strengthening the interaction of transporters and channels with partner proteins,by increasing their protein stability,and by transcriptional activation.Under excessive nutrient conditions,protein phosphorylation-based regulation suppresses nutrient uptake by reversing these processes.Strengthening phosphorylation regulation items that increase nutrient absorption and weakening phosphorylation modification items that are not conducive to nutrient absorption show potential as strategies for increasing nutrient use efficiency.
基金financially supported by the HAAFS Science and Technology Innovation Special Project China(2022KJCXZX-LYS-9)the Natural Science Foundation of Hebei Province China(C2021301004)the Key Research and Dvelopment Program of Hebei Province China(20326401D)。
文摘Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.
基金support of the Natural Science Foundation of China(U21A20218)the National Key Research and Development Program(2021YFD1700202-02)+1 种基金the Agricultural Research System of China(CARS-22-G-12)the Fostering Foundation for the Excellent Ph.D.Dissertation of Gansu Agricultural University(YB2024002).
文摘Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.
基金supported by the National Natural Science Foundation of China(No.82370838 and No.82172221).
文摘Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations such as low uptake efficiency,insufficient production,and inhomogeneous performance undermine their potential.To address these issues,numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades.In this review,we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake.In addition,we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.
文摘Introduction: COVID-19 vaccine uptake and acceptance have been a major global concern due to the prevalent misinformation and disinformation that has characterized the vaccine rollout worldwide. This study aimed to assess COVID-19 vaccine uptake and acceptance, and associated factors among selected community members in two states in southwestern Nigeria. Method: We conducted a cross-sectional study using a multistage sampling technique. Fifty catchment settlements of 10 health facilities in each of Oyo and Ogun States targeted for a COVID-19 infection prevention and control intervention were randomly selected. Four households were targeted per settlement. All households that refused access were replaced, to ensure a minimum of four households randomly selected per settlement. The primary household decision-maker was interviewed in each household. Information elicited included respondents’ sociodemographic characteristics, health history, knowledge, risk and benefit perception about the COVID-19 vaccine, vaccine uptake, and willingness to be vaccinated. The study was conducted from July–August 2021. Data were analyzed using SPSS IBM version 23. Result: Four hundred household decision-makers were surveyed in Oyo and Ogun states, after replacement. The mean age of the respondents was 43.0 ± 11.0 years. The majority, 346 (86.5%) had heard about COVID-19 vaccination, but only 47 (13.6%) had received a COVID-19 vaccination. Of the 299 respondents who reported not receiving a COVID-19 vaccination, 166 (55.5%) were willing to be vaccinated. In univariate analysis, respondents who were female had tertiary education, perceived that COVID-19 vaccines are free and accessible, perceived that COVID-19 vaccines have minimal side effects, and perceived higher benefits of COVID-19 vaccination had higher odds of being vaccinated. In contrast, younger respondents, respondents with higher knowledge scores on COVID-19 preventive measures, and with chronic illness had lower likelihoods of being vaccinated. In multivariate analysis, only the respondent’s age, perception score on COVID-19 vaccine benefits, knowledge score on IPC measures, and positive response on accessibility and safety were significant after adjusting for other factors. Conclusion: COVID-19 vaccine uptake rate as well as willingness to receive vaccination were low in the study setting. There is an urgent need for policymakers to embark on well-designed campaigns to address barriers to COVID-19 vaccination to increase vaccine uptake.
文摘Introduction: Pregnant women are a highly vulnerable population for COVID-19 with increased risk of hospitalization, intensive-care unit admission, invasive ventilation support, and mortality. Objective: This study determined the socio-demographic and economic factors associated with the uptake of COVID-19 vaccine among pregnant women utilizing antenatal care services in Pumwani Maternity Hospital, Nairobi County-Kenya. Methods: The study was carried out from 15 June to 23 July 2023. Systematic sampling was used to select 302 women from whom data was collected through face-to-face interviews using a pre-tested semi-structured questionnaire. Data was analyzed using SPSS software in which bivariate and multivariate logistic regression analyses were done at a significance level of p Results: A total of 302 pregnant women participated in the study. Of these, 105 (34.8%) were aged between twenty-six (26) and thirty (30) years. The mean age of the women was 28.60 ± (SD = 5.297). The uptake of the COVID-19 vaccine was 41.1%. The common side effects reported to be associated with the vaccines were fever, headache, joint pain, vomiting and skin rash. Uptake of the COVID-19 vaccine was significantly associated with being married (AOR = 3.65, 95% CI: 0.62 - 1.80, p = 0.001), having a secondary level of education (AOR = 3.78, 95% CI: 0.99 - 2.88, p = 0.001) and being employed (COR = 2.66, 95% CI: 1.31 - 3.06, p = 0.001). Conclusion: COVID-19 vaccination uptake remains low among pregnant women in seeking ANC in Nairobi. The individual factors associated with the uptake of COVID-19 vaccine among pregnant Women at Pumwani maternity hospital in Nairobi County were being married, having secondary level of education and being employed. Integration of the COVID-19 vaccine with other routine vaccinations as per the national immunization program in Kenya and the enhancement of education regarding the safety and efficacy of the COVID-19 vaccine in pregnancy and breastfeeding and economic empowerment of women are recommended.
文摘Background: Malaria in pregnancy causes maternal anemia, low birth weight, intrauterine growth retardation, and preterm deliveries. In malaria-endemic regions in Kenya, percentage of pregnant women hospitalized with malaria reach up to 60%. WHO recommends at least three doses of sulphadoxine pyrimethamine for Intermittent Preventive Treatment of Malaria in Pregnancy (IPTp) antenatally. This study sought to ascertain the prevalence and individual-level factors influencing the uptake of IPTp-SP3+. Methods: A facility-based cross-sectional study at Busia County Referral Hospital. 384 mothers were consecutively sampled at the maternity unit during delivery. Semi-structured questionnaires were used to collect data. Odds ratio (OR) and adjusted OR were used to determine statistical significance of individual factors influencing uptake of three or more IPTp-SP. Results: 43.0% of participants took IPTp-SP3+. Individual factors that affected the uptake of IPTp-SP3+ included starting ANC visits in the first trimester (adjusted odds ratio (aOR) = 2.1, 95% CI: 1.23 – 3.67, p = 0.046), having more than four ANC visits (aOR = 3.1, 95% CI: 1.49 – 6.50, p = 0.002), having a higher monthly income (aOR = 2.6, 95% CI: 1.24 – 5.36, p = 0.012), being aware of the advantages of IPTp-SP medications (aOR = 3.7, 95% CI: 1.40 – 9.74, p = 0.008), and having a positive attitude toward ANC services (aOR = 3.2, 95% CI: 1.61 – 6.31, p = 0.001). Conclusion: Less than half of the pregnant mothers are complyingIPTp-SP3+. There should be aggressive efforts by the County and National Ministries of Health promoting initiation of ANC attendance early and attendance of all the recommended eight visits together with ensuring availability of the drugs.
文摘Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.
基金Project (2012BAC09B04) supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of ChinaProject (2010-277-027) supported by Science and Technology Foundation of Environmental Protection in Hunan Province,ChinaProject (2011SK3262) supported by Science and Technology Planning of Hunan Province,China
文摘The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system.
基金Supported by National Science and Technology Support Program(2006BAD05B06-04)~~
文摘[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.
基金Supported by the Financial Breeding Fund for Young Scholars in Sichuan Province(2008QNJJ-016)Financial Fund for Excellent Gene Engineering Papers in Sichuan Province (2010LWJJ-008)~~
文摘[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.
基金Supported by the National Natural Science Foundation of China(30270777,30471013)~~
文摘[Objective] The study aimed to confirm difference of nitrogen uptake and used efficiency with different nitrogen use efficiency for grain output (NUEg) types of indica rice.[Method] 88 and 122 conventional indica rice cultivars were solution-cultured in 2001 and 2002, respectively. Dry matter weight (including root system, culm and sheath, leaves, panicle), nitrogen content of different organs, yield and its components were measured. The tested rice cultivars were classified into 6 types (i.e. A, B, C, D, E and F, A was the lowest, and F was the highest) based on their NUEg level by the MinSSw method.[Result](1)Difference of NUEg of the cultivars used in this study were very large; (2) No significant difference of N content at heading stage was observed among different NUEg types of indica rice. In the cultivars with higher NUEg, however, N content in leaf, stem-sheath and entire rice plant were lower at mature stage. (3)Cultivars with higher NUEg were characterized with lower N uptake before heading and at mature stage; (4) Cultivars with higher NUEg were characterized with higher N use efficiency in biomass production and harvest index. [Conclusion] The cultivars with higher NUEg showed lower N uptake and N content, while nitrogen use efficiency was higher.
基金Supported by Construction of Southwestern Rice Innovation System,Science and Technology Project on Food Production (2006BAD02-A05)Agriculture Science Technology Achievement TransformationFund (2006GB2F000256)+2 种基金Sichuan Provincial Foundation for Lead-ers of Disciplines in ScienceProject of Rice Breeding Technology ofSichuanProgram Promoted by Sichuan Financial Administration~~
文摘[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.
基金This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KJCX2-YW-N24, No.KZCX2-YW-Q02-03)the National Basic Research Program of China of Ministry of Science and Technology of China (No.2011CB403401) and the National Natural' Science Foundation of China (No.40925016, No.40830101, No.21077109, and No.41005070).
文摘The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available powders are measured as (1.00±0.11)×10-4 for α-A1203, (1.66±0.23)×10-4 for MgO, (9.70±1.95)×10-5 for Fe203, and (5.22±0.9)×10-5 for SiO2. These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2. H2O2 can be destroyed on Fe2O3 surface and O2 is formed. The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.
基金This paper was supported by Chinese Academy of Sciences.
文摘Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and CH4 uptake of a for-est soil were studied in laboratory by the method of orthogonal design. It was observed under laboratory conditions in this study that there were significant correlations between N2O emission rate, CH4 oxidation rate, soil pH and temperature. Nevertheless, N2O emission rate also showed a significant positive correlation with CH4 oxidation rate. The results suggested that pH and temperature were important factors controlling N2O emission and CH4 oxidation under this experiment conditions.
基金Supported by Jiangxi Agricultural University Students’Platform for Innovation and Entrepreneurship Training Program(DC201305)Key Projects in the National Science&Technology Pillar Program(2012BAD14B14-01)~~
文摘This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.
文摘Under NaCl stress for 2 d, H+-ATPase activity increased, and H+-PPase activity decreased in the tonoplast of salt-tolerant barley ( Hordeum vulgare L. cv. 'Tanyin 2') roots. La3+ (1 mmol/L), an inhibitor of Ca2+ channel in plasma membrane, and EGTA (5 mmol/L), a Ca2+ chelator, inhibited this NaCl-induced increase in H+-ATPase activity but stimulated the H+-PPase activity. Treatment of barley roots with CaM antagonist (trifluoperazine, TFP, 20 mumol/L) also diminished the increase of H+-ATPase activity induced by NaCl. La3+, TFP or La3+ + TFP increased Na+ uptake and decreased K+ and Ca2+ uptake in barley roots under NaCl stress. These results suggested that the activation of tonoplast H+-ATPase and the regulation of Na+ and K+ uptake under NaCl stress may be related to Ca2+-CaM system.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201503106,201103003)Earmarked Fund for China Agriculture Research System(CARS-25-G-36)~~
文摘Different application rates of controlled release nitrogen fertilizer (CRFN) were designed to evaluate their effects on the growth and root morphology of bitter gourd (Momordica charantia L.) seedlings, and thus determine the optimal nitrogen amount and suitable nitrogen content in substrate at seedling transplanting,, in com- parison with conventional fertilizer application. CRFN was applied at five levels, 0, 0.6, 1.2, 2.4 and 4.8 kg N/m3, and conventional fertilizer was applied at 0.6 kg N/m3 as control. Four replicates were included in each treatment. The results showed that 0.6-2.4 kg N/m3 CRFN provided sufficient N nutrient for bitter gourd, with higher shoot and root dry weights, root length and root surface area than control treat- ments. Correspondingly, the total inorganic nitrogen in substrate ranged from 99.3 to 162.5 mg/pot at seedling transplanting in these treatments. 1.2 kg N/m3 was proven to be the optimal CRFN rate. Compared with conventional nitrogen fertilizer applica- tion, 1.2 kg N/m3 CRFN in substrate increased the dry weight, nitrogen uptake and improved root morphology indices of seedlings, and more than 83.3 mg/pot inorgan- ic nitrogen could be carried with substrate at transplanting, revealing a potential to reduce N-deficient risk after rain and basal N input by continuous release of CRFN.
基金Supported by Special Fund from Ministry of Agriculture for Scientific Research(200903025-05)~~
文摘Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.