Terrestrial ecosystems are an important part of Earth systems,and they are undergoing remarkable changes in response to global warming.This study investigates the response of the terrestrial vegetation distribution an...Terrestrial ecosystems are an important part of Earth systems,and they are undergoing remarkable changes in response to global warming.This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global warming by using the new dynamic global vegetation model in the second version of the Chinese Academy of Sciences(CAS)Earth System Model(CAS-ESM2).We conducted two sets of simulations,a present-day simulation and a future simulation,which were forced by the present-day climate during 1981-2000 and the future climate during 2081-2100,respectively,as derived from RCP8.5 outputs in CMIP5.CO_(2)concentration is kept constant in all simulations to isolate CO_(2)-fertilization effects.The results show an overall increase in vegetation coverage in response to global warming,which is the net result of the greening in the mid-high latitudes and the browning in the tropics.The results also show an enhancement in carbon fluxes in response to global warming,including gross primary productivity,net primary productivity,and autotrophic respiration.We found that the changes in vegetation coverage were significantly correlated with changes in surface air temperature,reflecting the dominant role of temperature,while the changes in carbon fluxes were caused by the combined effects of leaf area index,temperature,and precipitation.This study applies the CAS-ESM2 to investigate the response of terrestrial ecosystems to climate warming.Even though the interpretation of the results is limited by isolating CO_(2)-fertilization effects,this application is still beneficial for adding to our understanding of vegetation processes and to further improve upon model parameterizations.展开更多
Rapid change of climate in vertical and considerable geomorphologic features form a typical diversity and distribution of biota in mountain ecosystems,i.e.,the subalpine forest zone(SFZ),the valley savanna zone(VSZ),a...Rapid change of climate in vertical and considerable geomorphologic features form a typical diversity and distribution of biota in mountain ecosystems,i.e.,the subalpine forest zone(SFZ),the valley savanna zone(VSZ),and the transition zone between them.The arid hot valley in the middle and lower reaches of Jinsha River,China represents a well target area to study distribution and the driving factors in these typical mountain ecosystems.Therefore,this study selects four sub-sample areas in the arid-hot valley to explore the distinctive changes of vegetation during 1990 to 2020,and their driving factors in the three different vegetation zones on spatiotemporal scales.On the spatial scale,the Moran’s index was applied to identify the transition zone between the SFZ and the VSZ.Results show that the VSZ at low altitudes(less than 600-1000 m from the valley bottom)is mainly affected by geomorphologic features,especially the slope aspect.With increase in altitude,the climate factors(e.g.,humidity,temperature,etc.)play a more significant role in the development of the SFZ,while the effect of geomorphologic features gradually weakens.On the time scale,The SFZ at higher altitudes experienced more rapid changes in temperature(temperature increase of 1.41°C over the last 60 years)than the VSZ at lower altitudes(temperature increase of 0.172°C over the past 60 years).It caused the forest cover increase faster than that of savanna grassland.Humidity and heat conditions are altered by topography and climate conditions,which shapes the development and physiology of plants as they adapt to the different climatic zones.Furthermore,according to the driving factors(geomorphologic and climate factors)of vegetation distribution found in this study,it suggests that suitable tree species should be planted in the transition zone to evolve into the forest zone and making the forest zone to recover from high to low altitudes gradually.展开更多
In this paper,based on the finite volume method,a high-precision hydrodynamic model coupled with the habitat suitability model is established,and the computational efficiency of the coupled model is improved by a grap...In this paper,based on the finite volume method,a high-precision hydrodynamic model coupled with the habitat suitability model is established,and the computational efficiency of the coupled model is improved by a graphics processing unit(GPU)-accelerated technology.The coupled model is used to solve the problem of the non-conservation of mass that may be caused by the nearshore hydrodynamic model in the processing of wetting and drying,while avoiding the unphysical high velocities at the wetting and drying boundaries.The coupled model is applied to simulate the high-precision hydrodynamic process of the Liao River estuary(LRE)and the hydrological habitat suitability of the estuarine vegetation(Suaeda heteroptera)growing in the LRE.The simulated values of the hydrological variables(the water level,the water depth,the current velocity and direction)are highly consistent with the measured values.The root mean square errors(RMSE)of the hydrological variables are 0.10m,0.12m/s and 17.24°,respectively.Furthermore,the simulated combined suitability index(CSI)distribution of Suaeda heteroptera(S.heteroptera)matches with the distribution of S.heteroptera obtained from the high-resolution remote sensing satellite images during the same time period.The ratio of the simulated weighted usable area(WUA)of S.heteroptera to the area obtained from the remote sensing satellite images during the same period is 81.9%.This study reveals the phenomenon that the distribution of S.heteroptera in the LRE is highly correlated with the high-precision hydrodynamic processes,and provides a scientific basis and a valuable reference for the conservation and the restoration of the estuarine vegetation.展开更多
Lancang-Mekong River Basin is one of ecoregions with rich biodiversity and high ecological values in the world. The basin has been strongly affected by human activities, particularly by dam construction. This study wa...Lancang-Mekong River Basin is one of ecoregions with rich biodiversity and high ecological values in the world. The basin has been strongly affected by human activities, particularly by dam construction. This study was conducted to investigate the vegetation distribution patterns in the dam areas along middle-low reach of the Lancang-Mekong River in Yunnan Province of China, where eight cascade dams have been planned or are being constructed. To identify the vegetation composition and structure, we sampled 126 quadrats along the transects arrayed vertically to both side of river channel from the year of 2004 to 2010. We found that the forest, shrub and grass communities were widely spread along the riverside. In low reach watershed of the Lancang-Mekong River, the dominated vegetations were grasses and shrubs which were severely disturbed by human activity. In middle reach of the Lancang-Mekong River, the dry-hot valley vegetation was found in the low valley. At high altitude, the pine forest and semi-evergreen seasonal forest were found. As a result of dam construction and operation, the structure and compositions of riparian vegetation were strongly changed. Some plants declined or disappeared due to the alteration of their habitats. The protection or restoration interventions are urgently needed to mitigate the risk of vegetation damage associated with dam projects along middle and low reach of the Lancang-Mekong River.展开更多
In China, coal mine spoils have traditionally been dumped in cone-shaped heaps that have the potential to pollute air, soil and water environments. The coal waste pile occupies lots of arable land and endangers the ec...In China, coal mine spoils have traditionally been dumped in cone-shaped heaps that have the potential to pollute air, soil and water environments. The coal waste pile occupies lots of arable land and endangers the ecological system in the coal mine district. Vegetation restoration is an efficient approach for controlling the environment pollution of coal waste pile, and is also a topic of current interest in restoration ecology and degradation system ecology. This study focused on the distribu- tion pattern and limiting factors of vegetation in coal waste pile of Xinzhuangzi Coal Mine in Huainan. The results show that two stable plant communities (Synodon dactylon+Erigeron bonariensis.L+Setaria viridis community and Humulus scan- den+Erigeron bonariensis. L community) exist at the bottom of the pile. Synodon dactylon and Erigeron bonariensis. L have much higher values of summed dominance ratio, which denote that these two species can be used for restoration of coal waste piles. The high levels of pH (8.77) and salinity, low levels of total P and total K in coal mine spoil can be the limiting factors for the residence and growth of vegetation.展开更多
[ Objective] The aim was to study the distribution of vegetation and its relationship with environmental factors in Yellow River estuarine wetland. [ Method] According to the data of the plant sample investigation and...[ Objective] The aim was to study the distribution of vegetation and its relationship with environmental factors in Yellow River estuarine wetland. [ Method] According to the data of the plant sample investigation and the related environmental factors in Yellow River Delta National Na- ture Reserve in 2009 -2010, the plant community changes and its relationship with environmental factors in temperate estuary wetland were ana- lyzed. [Result] There was little vegetation in the Yellow River delta and the distribution of plant was influenced by environment. Judging from the vegetation structure, the vertical structure of vegetation in the supralittoral zone zone vegetation cover included arbor layer, shrub layer and grass layer. The importance of grass was larger than shrub and arbor. In the intertidal zone, the vertical structure of plants was divided into shrub and herb layers. Judging from the variety, the species in the supralittoral zone was higher than that in the intertidal. The first principal component elected by Principal Component Analysis better reflects the salt of the study area, and the second principal component better reflects nutrient information. Regression analysis showed a positive correlation between importance value and the total salt content and electrical conductivity. In other words, if the total salt content and electrical conductivity increases, the importance value rose. However, the diversity index decreased as the total salt con- tent and electrical conductivity increased. [ Conclusion] The study provided theoretical basis for the ecological protection of vegetations and formula- tion of regional policies.展开更多
In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmosp...In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.展开更多
The impacts of climate change and human activities on vegetation dynamics have attracted wide attention,espe-cially in sensitive and vulnerable areas such as the Qingzang Plateau of China.In this region,a series of ec...The impacts of climate change and human activities on vegetation dynamics have attracted wide attention,espe-cially in sensitive and vulnerable areas such as the Qingzang Plateau of China.In this region,a series of ecological restoration projects have been launched while the effectiveness of these projects requires evaluation and further improvements.Remote sensing with high temporal resolution and spatial coverage is an effective way for the vegetation dynamics research in this region.In this study,the spatial and temporal distribution of climate factors and vegetation coverage as well as the influencing factors such as air temperature,precipitation,land use,slope,slope direction,soil and altitude were analyzed.The geographical detector was used to analyze the influence of climate factors on vegetation coverage and the interaction among factors in different eco-geographical regions.The results showed that:1)the average values from the 20 years of normalized difference vegetation index(NDVI)decreased gradually from southeast(>0.61)to northwest(0.12).The overall average of NDVI increased 0.02 per year from 1998 to 2018 and the impact factors varied among different eco-geographical regions;2)some con-trolling factors showed nonlinear enhancement such as altitude and slope;3)land use was an important factor affecting the distribution of vegetation especially in humid,semi-arid and arid areas,but the impacts of elevation and temperature were stronger than land use types in semi-humid and humid areas.The design and construc-tion of ecological protection and restoration projects on the Qingzang Plateau required scientific and detailed demonstration as well as monitoring and evaluation.In addition,new tools and theories were also needed in the selection of ecosystem restoration strategies.Based on the findings,this study also provides suggestions for the sustainable ecological restoration on the Qingzang Plateau.展开更多
Under global warming, seasonal snow takes faster melting rate than before, which greatly changes the hydro-logical cycle. In this study, by targeting three typical seasonal snow-covered land types (i.e., open shrublan...Under global warming, seasonal snow takes faster melting rate than before, which greatly changes the hydro-logical cycle. In this study, by targeting three typical seasonal snow-covered land types (i.e., open shrubland,evergreen needleleaf forest and mixed forest) in the Northern Hemisphere, the start of growing season (SGS) hasbeen found obviously advanced in the past years, greatly contributed by the faster melting rate of seasonal snow.It is manifested that significantly positive correlation has been found between SGS and May snow depth for openshrubs, March and April snow depth for evergreen needleleaf forests and March snow depth for mixed forests.However, such close association is not appeared in all the climate conditions of same vegetation. In the future,as the rate of melting snow becomes faster in the high emission of greenhouse gasses than the current situation,continuously advanced SGS will accelerate the change of vegetation distribution in the Northern Hemisphere.These findings offer insights into understanding the effect from seasonal snow on vegetation and promote thesustainable utilization of regional vegetation in the Northern Hemisphere.展开更多
The logistics transportation and distribution of fruits and vegetables has become one of the important links for people to obtain food,and it is also an important direction and emerging challenge in the logistics indu...The logistics transportation and distribution of fruits and vegetables has become one of the important links for people to obtain food,and it is also an important direction and emerging challenge in the logistics industry.As the social economy and transportation develop,the consumption ability of residents has been improved,and the high demand for fruits and vegetables has promoted the transportation of fruits and vegetables to meet the development conditions of the future fruit and vegetable industry.The study of fruit and vegetable logistics distribution can improve the efficiency of fruit and vegetable distribution,improve the construction of fruit and vegetable distribution system,and also meet the needs of people for different kinds of fruits and vegetables.Taking Guangxi fruit and vegetable distribution as an example,through empirical investigation,this paper studies the existing problems in the development of logistics distribution in the fruit and vegetable distribution industry,and puts forward corresponding measures and countermeasures according to the problems,so as to innovate the fruit and vegetable distribution mode in Guangxi Zhuang Autonomous Region.展开更多
The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged ...The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.展开更多
Evaluation of vegetation structure and distribution simulations in Earth system models(ESMs)is the basis for understanding historical reconstruction and future projection of changes in terrestrial ecosystems,carbon cy...Evaluation of vegetation structure and distribution simulations in Earth system models(ESMs)is the basis for understanding historical reconstruction and future projection of changes in terrestrial ecosystems,carbon cycle,and climate based on these ESMs.Such assessments can also provide important information of models'merits and shortcomings or systematic biases,and so clues for model development.Vegetation structure and distribution in ESMs are primarily characterized by three variables:leaf area index(LAI),tree height,and fractional coverage of plant functional type(PFT).However,for the ongoing Coupled Model Intercomparison Project Phase 6(CMIP6),only temporal variabilities of global-averaged LAI time series were evaluated,others remain largely uninvestigated.This study systematically investigates the spatial and/or temporal variability of the three critical variables from 27 ESMs in CMIP6 using satellite observations.Our results show that all models and the multi-model ensemble mean(MME)can generally reproduce the observed LAI spatial pattern but all of them overestimate the global mean LAI mainly due to overestimation of LAI in non-forested vegetated areas.Most CMIP6 models fail to capture the temporal variability in the annual LAI because of large biases in both the simulated trend magnitude and temporal pattern of interannual variability.The average LAI seasonal cycles in different latitude zones are roughly reproduced by the models,but 1-2 months delays in the LAI peak appear in the Arctic-boreal zone.Additionally,CMIP6 models overall overestimate tree height,and largely overestimate the global grass area but underestimate tree and shrub areas,especially in the middle and high latitudes.It should be kept in mind that such biases may have further impacts on the simulations of the related carbon and land-atmosphere interaction variables(e.g.,ecosystem production,carbon storage,transpiration,and temperature)for global change research.Hence,bias-correction should be made to improve reliability of vegetation structure and distribution when future projections and historical reconstructions.They also underscore the urgent need in development and parameterization of dynamic vegetation within Earth system models,such as phenology,allocation,and morphology schemes.展开更多
The study of modern pollen,and vegetation can improve the accuracy of paleoenvironmental reconstruction based on fossil pollen data.A total of 188 pollen surface samples were collected from Southern Xinjiang(34°0...The study of modern pollen,and vegetation can improve the accuracy of paleoenvironmental reconstruction based on fossil pollen data.A total of 188 pollen surface samples were collected from Southern Xinjiang(34°00’–43°00’N,74°00’–94°00’E)in China,with an elevation range of 888–4530 m.Surface pollen and vegetation were studied in the northern region of the Kunlun Mountains and the southern region of the Tianshan Mountains.The results showed that the surface pollen assemblages on the southern slope of the Tianshan Mountains(3530–1124 m)were divided into three pollen zones,namely,montane steppe,montane desert steppe,and montane desert.These zones were dominated by Artemisia,Chenopodiaceae,and Ephedra pollen.The surface pollen assemblages in the eastern Pamir Plateau(4530–1287 m)could be divided into alpine meadow,montane desert steppe,and montane desert zones,which were predominantly characterized by Artemisia,Chenopodiaceae,and Asteraceae pollen.However,the Southern Tarim Basin(3548–888 m)comprised montane desert steppe and montane desert zones,which was dominated by Artemisia and Chenopodiaceae pollen.The geographic distribution of the surface pollen sites obtained using ArcGIS,the R-value,and Pearson correlation analyses indicated that the over-represented Picea and Pinus pollen were of external origin and were transported by wind,water(rivers),and ice(glacier movement).Over-representation of Ephedra and Nitraria pollen was mainly distributed in the montane desert and desert steppe zones,respectively.Pollen from Chenopodiaceae and Artemisia were over-represented and broadly distributed across Southern Xinjiang.Juglans pollen was concentrated in areas with walnut trees,strongly indicating the presence of local parent plants.According to the Hybrid Singleparticle Lagrangian Integrated Trajectory model,more Pinus pollen was transported to the Pamir region by external airflows during spring and summer,resulting in its higher surface pollen content.Research elucidating the relationship between modern pollen and vegetation in southern Xinjiang could provide data describing the surface palynological database of Xinjiang for use in large-scale paleoenvironmental reconstructions.展开更多
Compacted soil has an adverse effect on plant roots and affects water and nutrient availability.However,different degrees of soil compaction may be suitable for growth and development of different understory species.T...Compacted soil has an adverse effect on plant roots and affects water and nutrient availability.However,different degrees of soil compaction may be suitable for growth and development of different understory species.This study determined whether soil compaction could explain characteristics of 10 different Dahurian larch(Larix gmelinii Rupr.)forest types in the Daxing’anling area.The relationship of soil compaction to soil depth was also studied.Forty-five tests were conducted on soil compaction of the 10 forest types with multiple comparisons,of which five showed no significant differences.At different soil depths,there were significant differences in soil compaction among forest types.The correlation between the degree of soil compaction and depth was positive and significant.The Larix gmelinii—shrub forest type,L.gmelinii—herb forest type,and L.gmelinii—swamp forest type were significantly different in soil compaction according to soil depth.This research indicates that,as a physical property,soil compaction may.展开更多
Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by t...Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by terrain. In such regions, if important at all, to- pographic effects will depend on cultural-historical factors and thus be human-driven (an- thropogenic) rather than natural, except in regions where the general climate or extreme soils limit the occurrence of forests. We used spatial regression modeling to assess the extent to which topographic factors explain forest distribution (presence-absence at a 48x48 m resolu- tion) in a lowland agricultural region (Denmark, 43,075 km2) at regional and landscape scales (whole study area and 10x10 km grid cells, respectively), how landscape-scale for- est-topography relationships vary geographically, and which potential drivers (topographic heterogeneity, forest cover, clay content, coastal/inland location) determine this geographic heterogeneity. Given a moist temperate climate and non-extreme soils all landscapes in Denmark would naturally be largely forest covered, and any topographic relationships will be totally or primarily human-driven. At regional scale, topographic predictors explained only 5% of the distribution of forest. In contrast, the explanatory power of topography varied from 0%-61% at landscape scale, with clear geographic patterning. Explanatory power of topog- raphy at landscape scale was moderately dependent on the potential drivers, with topog- raphic control being strongest in areas with high topographic heterogeneity and little forest cover. However, these conditioning effects were themselves geographically variable. Our findings show that topography by shaping human land-use can affect forest distribution even in flat, lowland regions, but especially via localized, geographically variable effects.展开更多
Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with ...Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks with big CV. Ks had moderate correlation in space distribution and combined both structural and random factors. At the N-S and E-W directions of watershed being parallel and normal to the stream valley, Ks had relatively weak correlation, indicating that the random factor was the dominate reason causing spatial variance. At the NE-SW and SE-NW directions, Ks had relatively strong correlation due to structural factors such as geomorphology and vegetation distribution patterns. Kriging optimal estimation method was used to produce Ks contour map. The Kriging standard deviation (SD) was the lowest near the sampling points, and increased along with the distance to sampling points. In the Loess Plateau region, soil texture is relatively even, and the vegetation distribution pattern was the key factor affecting spatial variability of Ks.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41705070)the Major Program of the National Natural Science Foundation of China(Grant No.41991282)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘Terrestrial ecosystems are an important part of Earth systems,and they are undergoing remarkable changes in response to global warming.This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global warming by using the new dynamic global vegetation model in the second version of the Chinese Academy of Sciences(CAS)Earth System Model(CAS-ESM2).We conducted two sets of simulations,a present-day simulation and a future simulation,which were forced by the present-day climate during 1981-2000 and the future climate during 2081-2100,respectively,as derived from RCP8.5 outputs in CMIP5.CO_(2)concentration is kept constant in all simulations to isolate CO_(2)-fertilization effects.The results show an overall increase in vegetation coverage in response to global warming,which is the net result of the greening in the mid-high latitudes and the browning in the tropics.The results also show an enhancement in carbon fluxes in response to global warming,including gross primary productivity,net primary productivity,and autotrophic respiration.We found that the changes in vegetation coverage were significantly correlated with changes in surface air temperature,reflecting the dominant role of temperature,while the changes in carbon fluxes were caused by the combined effects of leaf area index,temperature,and precipitation.This study applies the CAS-ESM2 to investigate the response of terrestrial ecosystems to climate warming.Even though the interpretation of the results is limited by isolating CO_(2)-fertilization effects,this application is still beneficial for adding to our understanding of vegetation processes and to further improve upon model parameterizations.
基金supported by China National Funds for Distinguished Young Scientists(Grant No.52025092)the Fundamental Research Funds for the Central Universities(Grant No.JB2022059)。
文摘Rapid change of climate in vertical and considerable geomorphologic features form a typical diversity and distribution of biota in mountain ecosystems,i.e.,the subalpine forest zone(SFZ),the valley savanna zone(VSZ),and the transition zone between them.The arid hot valley in the middle and lower reaches of Jinsha River,China represents a well target area to study distribution and the driving factors in these typical mountain ecosystems.Therefore,this study selects four sub-sample areas in the arid-hot valley to explore the distinctive changes of vegetation during 1990 to 2020,and their driving factors in the three different vegetation zones on spatiotemporal scales.On the spatial scale,the Moran’s index was applied to identify the transition zone between the SFZ and the VSZ.Results show that the VSZ at low altitudes(less than 600-1000 m from the valley bottom)is mainly affected by geomorphologic features,especially the slope aspect.With increase in altitude,the climate factors(e.g.,humidity,temperature,etc.)play a more significant role in the development of the SFZ,while the effect of geomorphologic features gradually weakens.On the time scale,The SFZ at higher altitudes experienced more rapid changes in temperature(temperature increase of 1.41°C over the last 60 years)than the VSZ at lower altitudes(temperature increase of 0.172°C over the past 60 years).It caused the forest cover increase faster than that of savanna grassland.Humidity and heat conditions are altered by topography and climate conditions,which shapes the development and physiology of plants as they adapt to the different climatic zones.Furthermore,according to the driving factors(geomorphologic and climate factors)of vegetation distribution found in this study,it suggests that suitable tree species should be planted in the transition zone to evolve into the forest zone and making the forest zone to recover from high to low altitudes gradually.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFC1407700)the National Natural Science Foundation of China(Grant No.51779038).
文摘In this paper,based on the finite volume method,a high-precision hydrodynamic model coupled with the habitat suitability model is established,and the computational efficiency of the coupled model is improved by a graphics processing unit(GPU)-accelerated technology.The coupled model is used to solve the problem of the non-conservation of mass that may be caused by the nearshore hydrodynamic model in the processing of wetting and drying,while avoiding the unphysical high velocities at the wetting and drying boundaries.The coupled model is applied to simulate the high-precision hydrodynamic process of the Liao River estuary(LRE)and the hydrological habitat suitability of the estuarine vegetation(Suaeda heteroptera)growing in the LRE.The simulated values of the hydrological variables(the water level,the water depth,the current velocity and direction)are highly consistent with the measured values.The root mean square errors(RMSE)of the hydrological variables are 0.10m,0.12m/s and 17.24°,respectively.Furthermore,the simulated combined suitability index(CSI)distribution of Suaeda heteroptera(S.heteroptera)matches with the distribution of S.heteroptera obtained from the high-resolution remote sensing satellite images during the same time period.The ratio of the simulated weighted usable area(WUA)of S.heteroptera to the area obtained from the remote sensing satellite images during the same period is 81.9%.This study reveals the phenomenon that the distribution of S.heteroptera in the LRE is highly correlated with the high-precision hydrodynamic processes,and provides a scientific basis and a valuable reference for the conservation and the restoration of the estuarine vegetation.
文摘Lancang-Mekong River Basin is one of ecoregions with rich biodiversity and high ecological values in the world. The basin has been strongly affected by human activities, particularly by dam construction. This study was conducted to investigate the vegetation distribution patterns in the dam areas along middle-low reach of the Lancang-Mekong River in Yunnan Province of China, where eight cascade dams have been planned or are being constructed. To identify the vegetation composition and structure, we sampled 126 quadrats along the transects arrayed vertically to both side of river channel from the year of 2004 to 2010. We found that the forest, shrub and grass communities were widely spread along the riverside. In low reach watershed of the Lancang-Mekong River, the dominated vegetations were grasses and shrubs which were severely disturbed by human activity. In middle reach of the Lancang-Mekong River, the dry-hot valley vegetation was found in the low valley. At high altitude, the pine forest and semi-evergreen seasonal forest were found. As a result of dam construction and operation, the structure and compositions of riparian vegetation were strongly changed. Some plants declined or disappeared due to the alteration of their habitats. The protection or restoration interventions are urgently needed to mitigate the risk of vegetation damage associated with dam projects along middle and low reach of the Lancang-Mekong River.
文摘In China, coal mine spoils have traditionally been dumped in cone-shaped heaps that have the potential to pollute air, soil and water environments. The coal waste pile occupies lots of arable land and endangers the ecological system in the coal mine district. Vegetation restoration is an efficient approach for controlling the environment pollution of coal waste pile, and is also a topic of current interest in restoration ecology and degradation system ecology. This study focused on the distribu- tion pattern and limiting factors of vegetation in coal waste pile of Xinzhuangzi Coal Mine in Huainan. The results show that two stable plant communities (Synodon dactylon+Erigeron bonariensis.L+Setaria viridis community and Humulus scan- den+Erigeron bonariensis. L community) exist at the bottom of the pile. Synodon dactylon and Erigeron bonariensis. L have much higher values of summed dominance ratio, which denote that these two species can be used for restoration of coal waste piles. The high levels of pH (8.77) and salinity, low levels of total P and total K in coal mine spoil can be the limiting factors for the residence and growth of vegetation.
基金Supported by National Natural Science Fund (40901276,40871239,41072258)Shandong Doctorate Fund (2011BSB01256)
文摘[ Objective] The aim was to study the distribution of vegetation and its relationship with environmental factors in Yellow River estuarine wetland. [ Method] According to the data of the plant sample investigation and the related environmental factors in Yellow River Delta National Na- ture Reserve in 2009 -2010, the plant community changes and its relationship with environmental factors in temperate estuary wetland were ana- lyzed. [Result] There was little vegetation in the Yellow River delta and the distribution of plant was influenced by environment. Judging from the vegetation structure, the vertical structure of vegetation in the supralittoral zone zone vegetation cover included arbor layer, shrub layer and grass layer. The importance of grass was larger than shrub and arbor. In the intertidal zone, the vertical structure of plants was divided into shrub and herb layers. Judging from the variety, the species in the supralittoral zone was higher than that in the intertidal. The first principal component elected by Principal Component Analysis better reflects the salt of the study area, and the second principal component better reflects nutrient information. Regression analysis showed a positive correlation between importance value and the total salt content and electrical conductivity. In other words, if the total salt content and electrical conductivity increases, the importance value rose. However, the diversity index decreased as the total salt con- tent and electrical conductivity increased. [ Conclusion] The study provided theoretical basis for the ecological protection of vegetations and formula- tion of regional policies.
基金supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB02008)the National Natural Science Foundation of China(Grant Number 41705070)supported by the National Natural Science Foundation of China(Grant Numbers 41475099 and 41305096)
文摘In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0405).
文摘The impacts of climate change and human activities on vegetation dynamics have attracted wide attention,espe-cially in sensitive and vulnerable areas such as the Qingzang Plateau of China.In this region,a series of ecological restoration projects have been launched while the effectiveness of these projects requires evaluation and further improvements.Remote sensing with high temporal resolution and spatial coverage is an effective way for the vegetation dynamics research in this region.In this study,the spatial and temporal distribution of climate factors and vegetation coverage as well as the influencing factors such as air temperature,precipitation,land use,slope,slope direction,soil and altitude were analyzed.The geographical detector was used to analyze the influence of climate factors on vegetation coverage and the interaction among factors in different eco-geographical regions.The results showed that:1)the average values from the 20 years of normalized difference vegetation index(NDVI)decreased gradually from southeast(>0.61)to northwest(0.12).The overall average of NDVI increased 0.02 per year from 1998 to 2018 and the impact factors varied among different eco-geographical regions;2)some con-trolling factors showed nonlinear enhancement such as altitude and slope;3)land use was an important factor affecting the distribution of vegetation especially in humid,semi-arid and arid areas,but the impacts of elevation and temperature were stronger than land use types in semi-humid and humid areas.The design and construc-tion of ecological protection and restoration projects on the Qingzang Plateau required scientific and detailed demonstration as well as monitoring and evaluation.In addition,new tools and theories were also needed in the selection of ecosystem restoration strategies.Based on the findings,this study also provides suggestions for the sustainable ecological restoration on the Qingzang Plateau.
基金This work is supported by the National Natural Science Foundation of China(Grant No.42041004 and 41991231)the“Innovation Star”Project for Outstanding Postgraduates of Gansu Province(Grant No.2022CXZX-107)the Central Universities(Grant No.lzujbky-2019-kb30).
文摘Under global warming, seasonal snow takes faster melting rate than before, which greatly changes the hydro-logical cycle. In this study, by targeting three typical seasonal snow-covered land types (i.e., open shrubland,evergreen needleleaf forest and mixed forest) in the Northern Hemisphere, the start of growing season (SGS) hasbeen found obviously advanced in the past years, greatly contributed by the faster melting rate of seasonal snow.It is manifested that significantly positive correlation has been found between SGS and May snow depth for openshrubs, March and April snow depth for evergreen needleleaf forests and March snow depth for mixed forests.However, such close association is not appeared in all the climate conditions of same vegetation. In the future,as the rate of melting snow becomes faster in the high emission of greenhouse gasses than the current situation,continuously advanced SGS will accelerate the change of vegetation distribution in the Northern Hemisphere.These findings offer insights into understanding the effect from seasonal snow on vegetation and promote thesustainable utilization of regional vegetation in the Northern Hemisphere.
文摘The logistics transportation and distribution of fruits and vegetables has become one of the important links for people to obtain food,and it is also an important direction and emerging challenge in the logistics industry.As the social economy and transportation develop,the consumption ability of residents has been improved,and the high demand for fruits and vegetables has promoted the transportation of fruits and vegetables to meet the development conditions of the future fruit and vegetable industry.The study of fruit and vegetable logistics distribution can improve the efficiency of fruit and vegetable distribution,improve the construction of fruit and vegetable distribution system,and also meet the needs of people for different kinds of fruits and vegetables.Taking Guangxi fruit and vegetable distribution as an example,through empirical investigation,this paper studies the existing problems in the development of logistics distribution in the fruit and vegetable distribution industry,and puts forward corresponding measures and countermeasures according to the problems,so as to innovate the fruit and vegetable distribution mode in Guangxi Zhuang Autonomous Region.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Key Research and Development Program of China(No.2016YFC0402408-5)National Natural Science Foundation of China(No.51179181,40788001)
文摘The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.
基金the National Key Research and Development Program of China(2017YFA0604804,2017YFA0604302)National Natural Science Foundation of China(41630530,41875137)the National Key Scientific and Technological Infrastructure project Earth System Science Numerical Simulator Facility(EarthLab).
文摘Evaluation of vegetation structure and distribution simulations in Earth system models(ESMs)is the basis for understanding historical reconstruction and future projection of changes in terrestrial ecosystems,carbon cycle,and climate based on these ESMs.Such assessments can also provide important information of models'merits and shortcomings or systematic biases,and so clues for model development.Vegetation structure and distribution in ESMs are primarily characterized by three variables:leaf area index(LAI),tree height,and fractional coverage of plant functional type(PFT).However,for the ongoing Coupled Model Intercomparison Project Phase 6(CMIP6),only temporal variabilities of global-averaged LAI time series were evaluated,others remain largely uninvestigated.This study systematically investigates the spatial and/or temporal variability of the three critical variables from 27 ESMs in CMIP6 using satellite observations.Our results show that all models and the multi-model ensemble mean(MME)can generally reproduce the observed LAI spatial pattern but all of them overestimate the global mean LAI mainly due to overestimation of LAI in non-forested vegetated areas.Most CMIP6 models fail to capture the temporal variability in the annual LAI because of large biases in both the simulated trend magnitude and temporal pattern of interannual variability.The average LAI seasonal cycles in different latitude zones are roughly reproduced by the models,but 1-2 months delays in the LAI peak appear in the Arctic-boreal zone.Additionally,CMIP6 models overall overestimate tree height,and largely overestimate the global grass area but underestimate tree and shrub areas,especially in the middle and high latitudes.It should be kept in mind that such biases may have further impacts on the simulations of the related carbon and land-atmosphere interaction variables(e.g.,ecosystem production,carbon storage,transpiration,and temperature)for global change research.Hence,bias-correction should be made to improve reliability of vegetation structure and distribution when future projections and historical reconstructions.They also underscore the urgent need in development and parameterization of dynamic vegetation within Earth system models,such as phenology,allocation,and morphology schemes.
基金supported by the National Natural Science Foundation of China(Grant Nos.41971121&42271161)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB31000000)。
文摘The study of modern pollen,and vegetation can improve the accuracy of paleoenvironmental reconstruction based on fossil pollen data.A total of 188 pollen surface samples were collected from Southern Xinjiang(34°00’–43°00’N,74°00’–94°00’E)in China,with an elevation range of 888–4530 m.Surface pollen and vegetation were studied in the northern region of the Kunlun Mountains and the southern region of the Tianshan Mountains.The results showed that the surface pollen assemblages on the southern slope of the Tianshan Mountains(3530–1124 m)were divided into three pollen zones,namely,montane steppe,montane desert steppe,and montane desert.These zones were dominated by Artemisia,Chenopodiaceae,and Ephedra pollen.The surface pollen assemblages in the eastern Pamir Plateau(4530–1287 m)could be divided into alpine meadow,montane desert steppe,and montane desert zones,which were predominantly characterized by Artemisia,Chenopodiaceae,and Asteraceae pollen.However,the Southern Tarim Basin(3548–888 m)comprised montane desert steppe and montane desert zones,which was dominated by Artemisia and Chenopodiaceae pollen.The geographic distribution of the surface pollen sites obtained using ArcGIS,the R-value,and Pearson correlation analyses indicated that the over-represented Picea and Pinus pollen were of external origin and were transported by wind,water(rivers),and ice(glacier movement).Over-representation of Ephedra and Nitraria pollen was mainly distributed in the montane desert and desert steppe zones,respectively.Pollen from Chenopodiaceae and Artemisia were over-represented and broadly distributed across Southern Xinjiang.Juglans pollen was concentrated in areas with walnut trees,strongly indicating the presence of local parent plants.According to the Hybrid Singleparticle Lagrangian Integrated Trajectory model,more Pinus pollen was transported to the Pamir region by external airflows during spring and summer,resulting in its higher surface pollen content.Research elucidating the relationship between modern pollen and vegetation in southern Xinjiang could provide data describing the surface palynological database of Xinjiang for use in large-scale paleoenvironmental reconstructions.
基金We thank the Inner Mongolia Daxing’anling Forest Ecosystem Research Station for field support and other support.
文摘Compacted soil has an adverse effect on plant roots and affects water and nutrient availability.However,different degrees of soil compaction may be suitable for growth and development of different understory species.This study determined whether soil compaction could explain characteristics of 10 different Dahurian larch(Larix gmelinii Rupr.)forest types in the Daxing’anling area.The relationship of soil compaction to soil depth was also studied.Forty-five tests were conducted on soil compaction of the 10 forest types with multiple comparisons,of which five showed no significant differences.At different soil depths,there were significant differences in soil compaction among forest types.The correlation between the degree of soil compaction and depth was positive and significant.The Larix gmelinii—shrub forest type,L.gmelinii—herb forest type,and L.gmelinii—swamp forest type were significantly different in soil compaction according to soil depth.This research indicates that,as a physical property,soil compaction may.
基金economic support from Aarhus University Research Foundationa Center of the Danish National Research Foundation
文摘Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by terrain. In such regions, if important at all, to- pographic effects will depend on cultural-historical factors and thus be human-driven (an- thropogenic) rather than natural, except in regions where the general climate or extreme soils limit the occurrence of forests. We used spatial regression modeling to assess the extent to which topographic factors explain forest distribution (presence-absence at a 48x48 m resolu- tion) in a lowland agricultural region (Denmark, 43,075 km2) at regional and landscape scales (whole study area and 10x10 km grid cells, respectively), how landscape-scale for- est-topography relationships vary geographically, and which potential drivers (topographic heterogeneity, forest cover, clay content, coastal/inland location) determine this geographic heterogeneity. Given a moist temperate climate and non-extreme soils all landscapes in Denmark would naturally be largely forest covered, and any topographic relationships will be totally or primarily human-driven. At regional scale, topographic predictors explained only 5% of the distribution of forest. In contrast, the explanatory power of topography varied from 0%-61% at landscape scale, with clear geographic patterning. Explanatory power of topog- raphy at landscape scale was moderately dependent on the potential drivers, with topog- raphic control being strongest in areas with high topographic heterogeneity and little forest cover. However, these conditioning effects were themselves geographically variable. Our findings show that topography by shaping human land-use can affect forest distribution even in flat, lowland regions, but especially via localized, geographically variable effects.
基金National NaturalScience Foundation grant (40474178, 30230290)Shaanxi Provincial Office of Education special projects (05JK241)
文摘Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks with big CV. Ks had moderate correlation in space distribution and combined both structural and random factors. At the N-S and E-W directions of watershed being parallel and normal to the stream valley, Ks had relatively weak correlation, indicating that the random factor was the dominate reason causing spatial variance. At the NE-SW and SE-NW directions, Ks had relatively strong correlation due to structural factors such as geomorphology and vegetation distribution patterns. Kriging optimal estimation method was used to produce Ks contour map. The Kriging standard deviation (SD) was the lowest near the sampling points, and increased along with the distance to sampling points. In the Loess Plateau region, soil texture is relatively even, and the vegetation distribution pattern was the key factor affecting spatial variability of Ks.