Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we...Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.展开更多
Objective:To investigate the percutaneous penetration enhancement effect of essential oil from Zanthoxylum bungeanum Maxim.(Z.bungeanum oil)on active components in externally-applied traditional Chinese medicines.Meth...Objective:To investigate the percutaneous penetration enhancement effect of essential oil from Zanthoxylum bungeanum Maxim.(Z.bungeanum oil)on active components in externally-applied traditional Chinese medicines.Methods:Five model drugs,geniposide,puerarin,ferulic acid,tetramethylpyrazine,and osthole,were chosen based on their lipophilicity and tested using in vitro transdermal permeation studies consisting of Franz diffusion cells and full thickness rat abdominal skin.Scanning electron microscopy was employed to observe the morphological changes of rat skin tissue after treatment with Z.bungeanum oil.The molecular interactions between the oil and the polar head groups in stratum corneum(SC)lipids were monitored using molecular dynamic simulation,and the SC/vehicle partition coefficients and saturation solubilities of the selected model drugs treated with and without the oil were also determined to ascertain its mechanisms of action.Results:As oil concentration increased,the log ERflow trended toward a negative linear relationship with the lipophilicity of drugs.After treatment with Z.bungeanum oil,a mild lifting up and wrinkle on the SC surface were observed,and appeared to become more pronounced as oil concentration increased.There was no significant difference between the control and the Z.bungeanum oil at different concentrations in terms of saturation solubility of GP,while saturation solubilities of the 4 other drugs gradually increased as oil concentration increased.The oxygen-containing constituents in Z.bungeanum oil,such as terpinen-4-ol and 1,8-cineole,which accounted for 57.95%of total oil,could form stable hydrogen bonds with the polar head group of ceramide 3.Conclusion:Z.bungeanum oil facilitated transdermal permeation of drugs with different lipophilicity,including the extremely hydrophilic and lipophilic drugs,whereas it exhibited greater enhancement activity for strongly hydrophilic drugs.The mechanisms of transdermal permeation enhancement by the oil could be explained with SC/vehicle partition coefficient,saturation solubility,and the interactions with SC lipids.展开更多
基金financially supported by the National Key R&D Program of China(2018YFD1000605)the Project of Science and Technology Development Center,National Forestry and Grassland Administration,China(KJZXSA202025)。
文摘Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.
基金National Natural Science Foundation of China(No.81473365)Postgraduate Project of Beijing University of Chinese Medicine(No.2016-JYB-XS095)The authors also thank the Innovative Research Team of Beijing University of Chinese Medicine(No.2011-CXTD-13)for its financial support.
文摘Objective:To investigate the percutaneous penetration enhancement effect of essential oil from Zanthoxylum bungeanum Maxim.(Z.bungeanum oil)on active components in externally-applied traditional Chinese medicines.Methods:Five model drugs,geniposide,puerarin,ferulic acid,tetramethylpyrazine,and osthole,were chosen based on their lipophilicity and tested using in vitro transdermal permeation studies consisting of Franz diffusion cells and full thickness rat abdominal skin.Scanning electron microscopy was employed to observe the morphological changes of rat skin tissue after treatment with Z.bungeanum oil.The molecular interactions between the oil and the polar head groups in stratum corneum(SC)lipids were monitored using molecular dynamic simulation,and the SC/vehicle partition coefficients and saturation solubilities of the selected model drugs treated with and without the oil were also determined to ascertain its mechanisms of action.Results:As oil concentration increased,the log ERflow trended toward a negative linear relationship with the lipophilicity of drugs.After treatment with Z.bungeanum oil,a mild lifting up and wrinkle on the SC surface were observed,and appeared to become more pronounced as oil concentration increased.There was no significant difference between the control and the Z.bungeanum oil at different concentrations in terms of saturation solubility of GP,while saturation solubilities of the 4 other drugs gradually increased as oil concentration increased.The oxygen-containing constituents in Z.bungeanum oil,such as terpinen-4-ol and 1,8-cineole,which accounted for 57.95%of total oil,could form stable hydrogen bonds with the polar head group of ceramide 3.Conclusion:Z.bungeanum oil facilitated transdermal permeation of drugs with different lipophilicity,including the extremely hydrophilic and lipophilic drugs,whereas it exhibited greater enhancement activity for strongly hydrophilic drugs.The mechanisms of transdermal permeation enhancement by the oil could be explained with SC/vehicle partition coefficient,saturation solubility,and the interactions with SC lipids.