We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o...In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not suppl...Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not supply a priori estimate for maximum modulus of solutions. In this paper an estimate to the maximum modulus is made firstly for a special case of quasi-linear elliptic equations, i.e. the A and B satisfy the following structural conditions展开更多
In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretizati...In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments.展开更多
This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem...This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]展开更多
This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational fo...This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.展开更多
Applying the integral a priori estimates method, the existence and uniqueness ofthe global solution for the dissipative Hasegawa-Mima equation with initial periodic bound-ary condition was proved.
The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2...The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2(t-τ 2)), x [FK(W1*1。*3/4]′ 2(t)=-b 0x α 2(t)+b 1f 2(x 1(t-τ 3),x 2(t-τ 4)).This approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions.展开更多
The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x...This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.展开更多
This paper considers the inverse acoustic wave scattering by a bounded penetrable obstacle with a conductive boundary condition.We will show that the penetrable scatterer can be uniquely determined by its far-field pa...This paper considers the inverse acoustic wave scattering by a bounded penetrable obstacle with a conductive boundary condition.We will show that the penetrable scatterer can be uniquely determined by its far-field pattern of the scattered field for all incident plane waves at a fixed wave number.In the first part of this paper,adequate preparations for the main uniqueness result are made.We establish the mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves.Then the well-posedness of a modified interior transmission problem is deeply investigated by the variational method.Finally,the a priori estimates of solutions to the general transmission problem with boundary data in L^(p)(δΩ)(1<p<2)are proven by the boundary integral equation method.In the second part of this paper,we give a novel proof on the uniqueness of the inverse conductive scattering problem.展开更多
This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=ε...This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=εuxx, t〉0,x∈R, -αPxx+P=f(u)+α/2ux^2-1/2u^2, t〉0,x∈R, (E) with the initial data u(0,x)=u0(x)→u±, as x→±∞ (I) Here, u_ 〈 u+ are two constants and f(u) is a sufficiently smooth function satisfying f" (u) 〉 0 for all u under consideration. Main aim of this article is to study the relation between solutions to the above Cauchy problem and those to the Riemann problem of the following nonlinear conservation law It is well known that if u_ 〈 u+, the above Riemann problem admits a unique global entropy solution u^R(x/t) u^R(x/t)={u_,(f′)^-1(x/t),u+, x≤f′(u_)t, f′(u_)t≤x≤f′(u+)t, x≥f′(u+)t. Let U(t, x) be the smooth approximation of the rarefaction wave profile constructed similar to that of [21, 22, 23], we show that if u0(x) - U(0,x) ∈ H^1(R) and u_ 〈 u+, the above Cauchy problem (E) and (I) admits a unique global classical solution u(t, x) which tends to the rarefaction wave u^R(x/t) as → +∞ in the maximum norm. The proof is given by an elementary energy method.展开更多
This paper is concerned with the initial boundary value problem for a viscoelastic model with relaxation. Under the only assumption that the C^0-norm of the initial data is small, without smallness hypothesis for the ...This paper is concerned with the initial boundary value problem for a viscoelastic model with relaxation. Under the only assumption that the C^0-norm of the initial data is small, without smallness hypothesis for the C^1-norm, the existence of the global smooth solution to the corresponding initial boundary value problem is proved. The analysis is based on some a priori estimates obtained by the 'maximum principle' of first-order quasilinear hyperbolic system.展开更多
The long time behavior of solution of the Hasegawa-Mima equation with dissipation term was considered. The global attractor problem of the Hasegawa-Mima equation with initial periodic boundary condition was studied. A...The long time behavior of solution of the Hasegawa-Mima equation with dissipation term was considered. The global attractor problem of the Hasegawa-Mima equation with initial periodic boundary condition was studied. Applying the uniform a priori estimates method, the existence of global attractor of this problem was proved, and also the dimensions of the global attractor was estimated.展开更多
In this note, we prove that Xr (0 〈 r 〈 1) norm of the vorticity controls the blow-up phenomena of strong solutions to the Navier-Stokes equations in R3.
The long time behavior of solution for Hirota equation with zero order dissipation is studied. The global weak attractor for this system in Hper^k is constructed. And then by exact analysis of the energy equation, it ...The long time behavior of solution for Hirota equation with zero order dissipation is studied. The global weak attractor for this system in Hper^k is constructed. And then by exact analysis of the energy equation, it is shown that the global weak attractor is actually the global strong attractor in Hper^k.展开更多
Let Ω⊆M be a bounded domain with a smooth boundary ∂Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on...Let Ω⊆M be a bounded domain with a smooth boundary ∂Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on Ω.Under the existence of a C^(2)-smooth strictly J-plurisubharmonic(J-psh for short)subsolution,we can solve this Dirichlet problem.Our method is based on the properties of subsolutions which have been widely used for fully nonlinear elliptic equations over Hermitian manifolds.展开更多
In this paper, we consider the Cauchy problem of a class of semilinear parabolic system. Firstly, we obtain the local existence of solutions of (1.1),(1.2) in H-1(R(1)), and then we prove the global existence of the s...In this paper, we consider the Cauchy problem of a class of semilinear parabolic system. Firstly, we obtain the local existence of solutions of (1.1),(1.2) in H-1(R(1)), and then we prove the global existence of the solutions in H-1 through a priori estimate.展开更多
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
文摘In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not supply a priori estimate for maximum modulus of solutions. In this paper an estimate to the maximum modulus is made firstly for a special case of quasi-linear elliptic equations, i.e. the A and B satisfy the following structural conditions
文摘In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
文摘In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments.
文摘This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]
基金Program for New Century ExcellentTalents in University(NCET-04-0745)the Key Project of the National Natural Science Foundation of China(10431060)
文摘This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.
基金Supported by the Natural Science Foundation of Henan Educational Committee(2003110005)Supported by the Natural Science Foundation of Henan University(XK02069)
文摘Applying the integral a priori estimates method, the existence and uniqueness ofthe global solution for the dissipative Hasegawa-Mima equation with initial periodic bound-ary condition was proved.
文摘The sufficient condition for the existence of non constant periodic solutions of the following planar system with four delays are obtained:x [FK(W1*1。*3/4]′ 1(t)=-a 0x α 1(t)+a 1f 1(x 1(t-τ 1),x 2(t-τ 2)), x [FK(W1*1。*3/4]′ 2(t)=-b 0x α 2(t)+b 1f 2(x 1(t-τ 3),x 2(t-τ 4)).This approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions.
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
基金The research of Fan Lili was supported by two grants from the National Natural Science Foundation of China (10871151 10925103)+1 种基金the research of Liu Hongxia was supported by National Natural Science Foundation of China (10871082)the research of Yin Hui was supported by National Natural Sciences Foundation of China (10901064)
文摘This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.
文摘This paper considers the inverse acoustic wave scattering by a bounded penetrable obstacle with a conductive boundary condition.We will show that the penetrable scatterer can be uniquely determined by its far-field pattern of the scattered field for all incident plane waves at a fixed wave number.In the first part of this paper,adequate preparations for the main uniqueness result are made.We establish the mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves.Then the well-posedness of a modified interior transmission problem is deeply investigated by the variational method.Finally,the a priori estimates of solutions to the general transmission problem with boundary data in L^(p)(δΩ)(1<p<2)are proven by the boundary integral equation method.In the second part of this paper,we give a novel proof on the uniqueness of the inverse conductive scattering problem.
基金supported by two grants from the National Natural Science Foundation of China under contracts 10431060 and 10329101, respectively
文摘This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=εuxx, t〉0,x∈R, -αPxx+P=f(u)+α/2ux^2-1/2u^2, t〉0,x∈R, (E) with the initial data u(0,x)=u0(x)→u±, as x→±∞ (I) Here, u_ 〈 u+ are two constants and f(u) is a sufficiently smooth function satisfying f" (u) 〉 0 for all u under consideration. Main aim of this article is to study the relation between solutions to the above Cauchy problem and those to the Riemann problem of the following nonlinear conservation law It is well known that if u_ 〈 u+, the above Riemann problem admits a unique global entropy solution u^R(x/t) u^R(x/t)={u_,(f′)^-1(x/t),u+, x≤f′(u_)t, f′(u_)t≤x≤f′(u+)t, x≥f′(u+)t. Let U(t, x) be the smooth approximation of the rarefaction wave profile constructed similar to that of [21, 22, 23], we show that if u0(x) - U(0,x) ∈ H^1(R) and u_ 〈 u+, the above Cauchy problem (E) and (I) admits a unique global classical solution u(t, x) which tends to the rarefaction wave u^R(x/t) as → +∞ in the maximum norm. The proof is given by an elementary energy method.
基金The research was supported by the Natural Science Foundation of China(10171037)the National Key Program for Basic Research of China(2002CCA03700)respectivelyThe first author was supported by south central university for Nationalities Nature Science F
文摘This paper is concerned with the initial boundary value problem for a viscoelastic model with relaxation. Under the only assumption that the C^0-norm of the initial data is small, without smallness hypothesis for the C^1-norm, the existence of the global smooth solution to the corresponding initial boundary value problem is proved. The analysis is based on some a priori estimates obtained by the 'maximum principle' of first-order quasilinear hyperbolic system.
基金Project supported by the Natural Science Foundation of Henan Educational Committee of China(No.2003110005)
文摘The long time behavior of solution of the Hasegawa-Mima equation with dissipation term was considered. The global attractor problem of the Hasegawa-Mima equation with initial periodic boundary condition was studied. Applying the uniform a priori estimates method, the existence of global attractor of this problem was proved, and also the dimensions of the global attractor was estimated.
文摘In this note, we prove that Xr (0 〈 r 〈 1) norm of the vorticity controls the blow-up phenomena of strong solutions to the Navier-Stokes equations in R3.
基金Supported by the Natural science Foundation of Henan Education Department(2007110004)the Natural Science Foundation of Henan University(06YBZR027)
文摘The long time behavior of solution for Hirota equation with zero order dissipation is studied. The global weak attractor for this system in Hper^k is constructed. And then by exact analysis of the energy equation, it is shown that the global weak attractor is actually the global strong attractor in Hper^k.
基金supported by the National Key R and D Program of China(2020YFA0713100).
文摘Let Ω⊆M be a bounded domain with a smooth boundary ∂Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on Ω.Under the existence of a C^(2)-smooth strictly J-plurisubharmonic(J-psh for short)subsolution,we can solve this Dirichlet problem.Our method is based on the properties of subsolutions which have been widely used for fully nonlinear elliptic equations over Hermitian manifolds.
文摘In this paper, we consider the Cauchy problem of a class of semilinear parabolic system. Firstly, we obtain the local existence of solutions of (1.1),(1.2) in H-1(R(1)), and then we prove the global existence of the solutions in H-1 through a priori estimate.