20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand...20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand, the same century produced proof that clocks at various locations in the gravitational field also read differently, and this fact is explained by general relativity, which is, in general, not Lorentz transformable. This paper establishes a common framework for the physics of clocks in these different situations.展开更多
With a few exceptions, physics theories are based in a conception of time and space;our two major theories, general relativity, and quantum field theory, differ in their conceptions. Key issues herein include mathemat...With a few exceptions, physics theories are based in a conception of time and space;our two major theories, general relativity, and quantum field theory, differ in their conceptions. Key issues herein include mathematics, logic, intuition, experiment, and ontology, with emphasis on simultaneity and dimensionality of the world. The treatment is through ontological comparison of two theories, space-time theory (special relativity) and energy-time theory (local absolute space and universal time). These two theories share many of the same equations but have different ontology.展开更多
Since their publications, theories in classical and modern physics have thoroughly studied the essence of matters. However, modern physical models only examined the change on the appearance of substances within its su...Since their publications, theories in classical and modern physics have thoroughly studied the essence of matters. However, modern physical models only examined the change on the appearance of substances within its surrounding space, and it has never involved the study of absolute space as models in modern physics did not endorse the existence of absolute space. This work put in question the theories of higher-dimensional Universe accepted in mainstream physics. In order to reignite discussions in the Essence of the Universe, the author proposed the hypothesis that the Essence of the Universe is the zero-dimensional space and that it does not change accordingly with the change in substances, and that space is only and solely space. This work explored the topic of a zero-dimensional Universe using Western and Eastern philosophical concepts and their derivatives. This work concluded that zero-dimensional space could be a possibility that should be further studied, that the <em>cause</em> and <em>information</em> of Intelligent Energy proposed by the author influenced the motion and change of substances, and that time and force were merely parameters that describe the state of matters.展开更多
Special relativity formulates a world partitioned into frames in relative motion;absolute motion is prohibited by axiom: no preferred frame, with consequences for the ontology of velocity. The best guide to physical r...Special relativity formulates a world partitioned into frames in relative motion;absolute motion is prohibited by axiom: no preferred frame, with consequences for the ontology of velocity. The best guide to physical reality is experiment, so ontology of velocity is investigated in the context of primordial field theory in terms of three experiments: Michelson-Morley, Michelson-Gale and Hafele-Keating experiments.展开更多
The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based o...The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based on special relativity theory, mathematics, logic, intuition, experiment, and ontology. Key is the ontological framework, specifically whether the framework does or does not include gravity. This paper examines both cases, with detailed analysis of gravitomagnetism and of relativistic mass in collisions.展开更多
The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015...The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015 at the same station, The station is situated on Gamov peninsular (42.58° N, 131.15° E, Russia) at the coast of Japan Sea, This region constitutes the eastern boundary of Eurasia. This major continental tectonic feature is associated with a seismic activity, high heat flow and anomalous thickness of earth's crust. The goal of the observation was the investigation of gravity variation with time and seismicity situation monitoring. Gravity observation was developed at special basement by absolute gravimeter (GABL type) and by spring gravimeter (SCINREX CG-5and gPhone type). Tidal models were tested by results of observation with spring gravimeters. Reduction task was solved, as the experimental data received from different points of Shults Cape Observatory was used. Applied reduction coefficient is 203.3 12Gal m l, and agrees with theoretical calculation. Next goal was studying structure of earth's crust by means of gravity models. Gravity anomaly varied from 30 mGal to 46 mGal, which also depend on difference reference system, Experimental results were used for testing of the structure of continental boundary, which also depends on the sea bottom flexion. Thickness of elastic layer was estimated from 12 km to 18 km by using different models.展开更多
文摘20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand, the same century produced proof that clocks at various locations in the gravitational field also read differently, and this fact is explained by general relativity, which is, in general, not Lorentz transformable. This paper establishes a common framework for the physics of clocks in these different situations.
文摘With a few exceptions, physics theories are based in a conception of time and space;our two major theories, general relativity, and quantum field theory, differ in their conceptions. Key issues herein include mathematics, logic, intuition, experiment, and ontology, with emphasis on simultaneity and dimensionality of the world. The treatment is through ontological comparison of two theories, space-time theory (special relativity) and energy-time theory (local absolute space and universal time). These two theories share many of the same equations but have different ontology.
文摘Since their publications, theories in classical and modern physics have thoroughly studied the essence of matters. However, modern physical models only examined the change on the appearance of substances within its surrounding space, and it has never involved the study of absolute space as models in modern physics did not endorse the existence of absolute space. This work put in question the theories of higher-dimensional Universe accepted in mainstream physics. In order to reignite discussions in the Essence of the Universe, the author proposed the hypothesis that the Essence of the Universe is the zero-dimensional space and that it does not change accordingly with the change in substances, and that space is only and solely space. This work explored the topic of a zero-dimensional Universe using Western and Eastern philosophical concepts and their derivatives. This work concluded that zero-dimensional space could be a possibility that should be further studied, that the <em>cause</em> and <em>information</em> of Intelligent Energy proposed by the author influenced the motion and change of substances, and that time and force were merely parameters that describe the state of matters.
文摘Special relativity formulates a world partitioned into frames in relative motion;absolute motion is prohibited by axiom: no preferred frame, with consequences for the ontology of velocity. The best guide to physical reality is experiment, so ontology of velocity is investigated in the context of primordial field theory in terms of three experiments: Michelson-Morley, Michelson-Gale and Hafele-Keating experiments.
文摘The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based on special relativity theory, mathematics, logic, intuition, experiment, and ontology. Key is the ontological framework, specifically whether the framework does or does not include gravity. This paper examines both cases, with detailed analysis of gravitomagnetism and of relativistic mass in collisions.
文摘The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015 at the same station, The station is situated on Gamov peninsular (42.58° N, 131.15° E, Russia) at the coast of Japan Sea, This region constitutes the eastern boundary of Eurasia. This major continental tectonic feature is associated with a seismic activity, high heat flow and anomalous thickness of earth's crust. The goal of the observation was the investigation of gravity variation with time and seismicity situation monitoring. Gravity observation was developed at special basement by absolute gravimeter (GABL type) and by spring gravimeter (SCINREX CG-5and gPhone type). Tidal models were tested by results of observation with spring gravimeters. Reduction task was solved, as the experimental data received from different points of Shults Cape Observatory was used. Applied reduction coefficient is 203.3 12Gal m l, and agrees with theoretical calculation. Next goal was studying structure of earth's crust by means of gravity models. Gravity anomaly varied from 30 mGal to 46 mGal, which also depend on difference reference system, Experimental results were used for testing of the structure of continental boundary, which also depends on the sea bottom flexion. Thickness of elastic layer was estimated from 12 km to 18 km by using different models.