期刊文献+
共找到19,404篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on the activation of coal gasification fly ash from industrial CFB gasifiers
1
作者 Qiyao Yang Xiaobin Qi +1 位作者 Qinggang Lyu Zhiping Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期8-18,共11页
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen... Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage. 展开更多
关键词 Circulating fluidized bed Coal gasification fly ash Steam activation Pore structure evolution Fluidization activation
下载PDF
Strategies to achieve effective nitrogen activation
2
作者 Bin Chang Huabin Zhang +1 位作者 Shuhui Sun Gaixia Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期137-163,共27页
Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few... Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations. 展开更多
关键词 activation via mediators catalyst optimization electrochemical nitrogen fixation high-energy activation of nitrogen NITROGEN
下载PDF
Acid mine drainage activation mechanism on lime-depressed pyrite flotation from copper sulfide ore
3
作者 Jia-qiao YUAN Zhan DING +3 位作者 Yun-xiao BI Jie LI Shu-ming WEN Shao-jun BAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2987-3001,共15页
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l... The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores. 展开更多
关键词 copper sulfur ore acid mine drainage lime-depressed pyrite FLOTATION natural activator activation mechanism
下载PDF
Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl_(2) via modifying cellulose structure
4
作者 Linghui Kong Chao Li +7 位作者 Runxing Sun Shu Zhang Yi Wang Jun Xiang Song Hu Dong Wang Chuanjun Leng Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期227-237,共11页
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d... Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280. 展开更多
关键词 Thermal pretreatment activation with ZnCl_(2) Willow branch Activated carbon Biochar
下载PDF
Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance
5
作者 Qicheng Feng Wanming Lu +1 位作者 Han Wang Qian Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2159-2172,共14页
Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new su... Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite. 展开更多
关键词 MALACHITE copper ions stepwise activation flotation mechanism enhanced sulfidization
下载PDF
Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation
6
作者 Zhiming Sun Xinlin Wang +3 位作者 Shaoran Jia Jialin Liang Xiaotian Ning Chunquan Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期103-118,共16页
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T... Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment. 展开更多
关键词 Coal gangue Persulfate activation Advanced oxidation processes Polycyclic aromatic hydrocarbons Phenol Ferrous chloride
下载PDF
Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO_(2) methanation:Synergistic catalysis of Ni and Co species
7
作者 Zonglin Li Jianjun Chen +8 位作者 Yu Xie Junjie Wen Huiling Weng Mingxue Wang Jingyi Zhang Jinyan Cao Guocai Tian Qiulin Zhang Ping Ning 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期213-225,共13页
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s... An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance. 展开更多
关键词 Zonal activation CO_(2) methanation Dual active sites Synergistic effect
下载PDF
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
8
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 Reaction mechanism Powdered activated coke preparation SO_(2)adsorption One-step rapid activation Flue gas atmosphere
下载PDF
Revealing the correlation between adsorption energy and activation energy to predict the catalytic activity of metal oxides for HMX using DFT
9
作者 Xiurong Yang Chi Zhang +6 位作者 Wujing Jin Zhaoqi Guo Hongxu Gao Shiyao Niu Fengqi Zhao Bo Liu Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期262-270,共9页
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate... Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost. 展开更多
关键词 Density functional theory HMX Metal oxides Adsorption energy activation energy
下载PDF
Screening the optimal Co_(x)/CeO_(2)(110)(x=1–6)catalyst for methane activation in coalbed gas
10
作者 Li’nan Huang Danyang Li +3 位作者 Lei Jiang Zhiqiang Li Dong Tian Kongzhai Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期256-271,共16页
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,... The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions. 展开更多
关键词 Co cluster growth Ce-based catalysts Methane activation DFT
下载PDF
Using microglia-derived extracellular vesicles to capture diversity of microglial activation phenotypes following neurological injury
11
作者 Austyn D.Roseborough Nikita Ollen-Bittle Shawn NWhitehead 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1633-1634,共2页
Microglia are one of the three glial cell populations in the central nervous system(CNS),along with astrocytes and oligodendrocytes.While microglia are unique among brain cells due to their hematologic origin and perf... Microglia are one of the three glial cell populations in the central nervous system(CNS),along with astrocytes and oligodendrocytes.While microglia are unique among brain cells due to their hematologic origin and perform immune functions similar to peripheral macrophages,they are not simply macrophages of the CNS. 展开更多
关键词 NEUROLOGICAL cytes activation
下载PDF
DNA damage response-related immune activation signature predicts the response to immune checkpoint inhibitors: from gastrointestinal cancer analysis to pan-cancer validation
12
作者 Junya Yan Shibo Wang +20 位作者 Jing Zhang Qiangqiang Yuan Xianchun Gao Nannan Zhang Yan Pan Haohao Zhang Kun Liu Jun Yu Linbin Lu Hui Liu Xiaoliang Gao Sheng Zhao Wenyao Zhang Abudurousuli Reyila Yu Qi Qiujin Zhang Shundong Cang Yuanyuan Lu Yanglin Pan Yan Kong Yongzhan Nie 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第3期252-266,共15页
Objective: DNA damage response(DDR) deficiency has emerged as a prominent determinant of tumor immunogenicity. This study aimed to construct a DDR-related immune activation(DRIA) signature and evaluate the predictive ... Objective: DNA damage response(DDR) deficiency has emerged as a prominent determinant of tumor immunogenicity. This study aimed to construct a DDR-related immune activation(DRIA) signature and evaluate the predictive accuracy of the DRIA signature for response to immune checkpoint inhibitor(ICI) therapy in gastrointestinal(GI) cancer.Methods: A DRIA signature was established based on two previously reported DNA damage immune response assays. Clinical and gene expression data from two published GI cancer cohorts were used to assess and validate the association between the DRIA score and response to ICI therapy. The predictive accuracy of the DRIA score was validated based on one ICI-treated melanoma and three pan-cancer published cohorts.Results: The DRIA signature includes three genes(CXCL10, IDO1, and IFI44L). In the discovery cancer cohort, DRIA-high patients with gastric cancer achieved a higher response rate to ICI therapy than DRIA-low patients(81.8% vs. 8.8%;P < 0.001), and the predictive accuracy of the DRIA score [area under the receiver operating characteristic curve(AUC) = 0.845] was superior to the predictive accuracy of PD-L1 expression, tumor mutational burden, microsatellite instability, and Epstein–Barr virus status. The validation cohort demonstrated that the DRIA score identified responders with microsatellite-stable colorectal and pancreatic adenocarcinoma who received dual PD-1 and CTLA-4 blockade with radiation therapy. Furthermore, the predictive performance of the DRIA score was shown to be robust through an extended validation in melanoma, urothelial cancer, and pan-cancer.Conclusions: The DRIA signature has superior and robust predictive accuracy for the efficacy of ICI therapy in GI cancer and pancancer, indicating that the DRIA signature may serve as a powerful biomarker for guiding ICI therapy decisions. 展开更多
关键词 DNA damage response-related immune activation immune checkpoint inhibitors biomarker gastrointestinal cancer pan-cancer
下载PDF
The impact of maternal immune activation on the morphology and electrophysiological properties of postnatally-born neurons in the offspring
13
作者 Emilio J.Galván Angelica Zepeda 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期399-400,共2页
Pregnancy comes with a combination of physical changes and physiological immunosuppression that increases the susceptibility of women to pathogens and in turn,rises the prevalence of infectious diseases.
关键词 PREVALENCE activation impact
下载PDF
Tuning beneficial calcineurin phosphatase activation to counterα-synuclein toxicity in a yeast model of Parkinson’s disease
14
作者 Srishti Chawla Mikael Molin Thomas Nystrom 《Neural Regeneration Research》 SCIE CAS 2025年第1期199-200,共2页
Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostas... Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae. 展开更多
关键词 activation DINUCLEAR CONSERVED
下载PDF
Properties of Activated Carbons from Sugarcane Leaves and Rice Straw Derived Charcoals by Activation at Low Temperature via KMnO_(4)Pre-Oxidation-Hydrolysis
15
作者 Sumrit Mopoung Narissara Namkaew and Sasiwan Srikasaem 《Journal of Renewable Materials》 EI CAS 2024年第8期1433-1454,共22页
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ... Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO2 accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO4 concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO4 were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO4 and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation. 展开更多
关键词 Activated carbon potassium permanganate pre-oxidation-hydrolysis low carbonization temperature low activation temperature
下载PDF
Human AKR1A1 involves in metabolic activation of carcinogenic aristolochic acidⅠ
16
作者 GAO Zhenna YOU Xinyue +6 位作者 LIU Weiying WU Jiaying XI Jing CAO Yiyi ZHANG Xiaohong ZHANG Xinyu LUAN Yang 《中国药理学与毒理学杂志》 CAS 北大核心 2024年第9期641-651,共11页
OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bla... OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucidation of the carcino⁃genic mechanism of AA-Ⅰ. 展开更多
关键词 metabolic activation nitro-reduction aldo-keto reductase superfamily aristolochic acidⅠ
下载PDF
Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism
17
作者 Shihao Feng Qin Ouyang +4 位作者 Jing Huang Xilin Zhang Zhongjun Ma Kun Liang Qing Huang 《Journal of Renewable Materials》 EI CAS 2024年第7期1207-1218,共12页
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d... Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors. 展开更多
关键词 LIGNIN porous carbon KOH activation mechanism SUPERCAPACITOR
下载PDF
Brain-wide activation involved in 15 mA transcranial alternating current stimulation in patients with first-episode major depressive disorder
18
作者 Jie Wang Wenfeng Zhao +8 位作者 Huang Wang Haixia Leng Qing Xue Mao Peng Baoquan Min Xiukun Jin Liucen Tan Keming Gao Hongxing Wang 《General Psychiatry》 CSCD 2024年第2期265-273,共9页
Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely un... Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely unknown.Aims To investigate which intracranial brain structures are engaged in the tACS at 77.5 Hz and 15 mA,delivered via the forehead and the mastoid electrodes in the human brain.Methods Actual human head models were built using the magnetic resonance imagings of eight outpatient volunteers with drug-naïve,first-episode major depressive disorder and then used to perform the electric field distributions with SimNIBS software.Results The electric field distributions of the sagittal,coronal and axial planes showed that the bilateral frontal lobes,bilateral temporal lobes,hippocampus,cingulate,hypothalamus,thalamus,amygdala,cerebellum and brainstem were visibly stimulated by the 15 mA tACS procedure.Conclusions Brain-wide activation,including the cortex,subcortical structures,cerebellum and brainstem,is involved in the 15 mA tACS intervention for first-episode major depressive disorder.Our results indicate that the simultaneous involvement of multiple brain regions is a possible mechanism for its effectiveness in reducing depressive symptoms. 展开更多
关键词 STIMULATION INVOLVEMENT activation
下载PDF
Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice
19
作者 Chun-Mei Li Tian Sun +5 位作者 Mou-Jie Yang Zhi Yang Qing Li Jia-Lin Shi Chong Zhang Jun-Fei Jin 《World Journal of Hepatology》 2024年第10期1188-1198,共11页
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury re... BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation. 展开更多
关键词 C2-FH COMPLEMENT Complement activation Acetaminophen-induced liver injury Inflammation
下载PDF
Multimodal abnormalities of brain structures in adolescents and young adults with major depressive disorder:An activation likelihood estimation meta-analysis
20
作者 Yan-Ping Shu Qin Zhang +4 位作者 Yong-Zhe Hou Shuang Liang Zu-Li Zheng Jia-Lin Li Gang Wu 《World Journal of Psychiatry》 SCIE 2024年第7期1106-1117,共12页
BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging ... BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies. 展开更多
关键词 Major depressive disorder ADOLESCENT Young adults NEUROIMAGING Diffusion tensor imaging Voxel-based morphometry activation likelihood estimation META-ANALYSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部