期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Unsupervised Functional Data Clustering Based on Adaptive Weights
1
作者 Yutong Gao Shuang Chen 《Open Journal of Statistics》 2023年第2期212-221,共10页
In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be direc... In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms. 展开更多
关键词 Functional Data Unsupervised Learning Clustering Functional Principal Component Analysis adaptive Weight
下载PDF
An Active Anti-Jamming Approach for Frequency Diverse Array Radar with Adaptive Weights 被引量:2
2
作者 Yibin Liu Chunyang Wang +1 位作者 Guimei Zheng Jian Gong 《Journal of Beijing Institute of Technology》 EI CAS 2021年第4期403-411,共9页
Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency ... Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency diverse array radar is proposed.By deriving the closed form of the phase center in a uniform line array FDA,we establish a model of the FDA signal based on adaptive weights and derive the effect of active anti-jamming in this regime.The pro-posed active anti-jamming method makes it difficult for jammers to detect or locate our radar.Fur-thermore,the effectiveness of the two frequency increment schemes in terms of anti-jamming is ana-lyzed by comparing the deviation of phase center.Finally,the simulation results verify the effective-ness and superiority of the proposed method. 展开更多
关键词 frequency diverse array(FDA) active anti-jamming adaptive weights phase center deviation
下载PDF
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:1
3
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
下载PDF
Dynamic spatiotemporal correlation coefficient based on adaptive weight
4
作者 Guoli Mo Chunzhi Tan +1 位作者 Weiguo Zhang Xuezeng Yu 《Financial Innovation》 2023年第1期424-466,共43页
Risk management is an important aspect of financial research because correlations among financial data are essential in evaluating portfolio risk.Among various correlations,spatiotemporal correlations involve economic... Risk management is an important aspect of financial research because correlations among financial data are essential in evaluating portfolio risk.Among various correlations,spatiotemporal correlations involve economic entity attributes and are interrelated in space and time.Such correlations have therefore drawn increasing attention in financial risk management.However,classical correlation measurements are typically based on either time series correlations or spatial dependence;they cannot be directly applied to financial data with spatiotemporal correlations.The spatiotemporal correlation coefficient model with adaptive weight proposed in this paper can(1)address the absolute quantity,dynamic quantity,and dynamic development of financial data and(2)be used for risk grading,financial risk evaluation,and portfolio management.To verify the validity and superiority of this model,cluster analysis results and portfolio performance are compared with a classical model with time series correlation or spatial correlation,respectively.Empirical findings show that the proposed coefficient is highly effective and convenient compared to others.Overall,our method provides a highly efficient financial risk management method with valuable implications for investors and financial institutions. 展开更多
关键词 Spatiotemporal correlation Absolute distance Growth distance Fluctuation distance adaptive weight
下载PDF
LKAW: A Robust Watermarking Method Based on Large Kernel Convolution and Adaptive Weight Assignment
5
作者 Xiaorui Zhang Rui Jiang +3 位作者 Wei Sun Aiguo Song Xindong Wei Ruohan Meng 《Computers, Materials & Continua》 SCIE EI 2023年第4期1-17,共17页
Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learnin... Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise. 展开更多
关键词 Robust watermarking large kernel convolution adaptive loss weights high-frequency wavelet loss deep learning
下载PDF
Self-supervised recalibration network for person re-identification
6
作者 Shaoqi Hou Zhiming Wang +4 位作者 Zhihua Dong Ye Li Zhiguo Wang Guangqiang Yin Xinzhong Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期163-178,共16页
The attention mechanism can extract salient features in images,which has been proved to be effective in improving the performance of person re-identification(Re-ID).However,most of the existing attention modules have ... The attention mechanism can extract salient features in images,which has been proved to be effective in improving the performance of person re-identification(Re-ID).However,most of the existing attention modules have the following two shortcomings:On the one hand,they mostly use global average pooling to generate context descriptors,without highlighting the guiding role of salient information on descriptor generation,resulting in insufficient ability of the final generated attention mask representation;On the other hand,the design of most attention modules is complicated,which greatly increases the computational cost of the model.To solve these problems,this paper proposes an attention module called self-supervised recalibration(SR)block,which introduces both global and local information through adaptive weighted fusion to generate a more refined attention mask.In particular,a special"Squeeze-Excitation"(SE)unit is designed in the SR block to further process the generated intermediate masks,both for nonlinearizations of the features and for constraint of the resulting computation by controlling the number of channels.Furthermore,we combine the most commonly used Res Net-50 to construct the instantiation model of the SR block,and verify its effectiveness on multiple Re-ID datasets,especially the mean Average Precision(m AP)on the Occluded-Duke dataset exceeds the state-of-the-art(SOTA)algorithm by 4.49%. 展开更多
关键词 Person re-identification Attention mechanism Global information Local information adaptive weighted fusion
下载PDF
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data
7
作者 P.K.A.Chitra S.Appavu alias Balamurugan +3 位作者 S.Geetha Seifedine Kadry Jungeun Kim Keejun Han 《Computer Systems Science & Engineering》 2024年第5期1367-1385,共19页
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor... A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods. 展开更多
关键词 Multi-label imbalanced data multi-label learning Borderline MLSMOTE concurrent multi-label adaptive weighted multi-label elastic net difficult minority label
下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
8
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
下载PDF
Research on Data Fusion of Adaptive Weighted Multi-Source Sensor 被引量:3
9
作者 Donghui Li Cong Shen +5 位作者 Xiaopeng Dai Xinghui Zhu Jian Luo Xueting Li Haiwen Chen Zhiyao Liang 《Computers, Materials & Continua》 SCIE EI 2019年第9期1217-1231,共15页
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu... Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality. 展开更多
关键词 adaptive weighting multi-source sensor data fusion loss of data processing grubbs elimination
下载PDF
Multi-Source Adaptive Selection and Fusion for Pedestrian Dead Reckoning 被引量:1
10
作者 Yuanxun Zheng Qinghua Li +2 位作者 Changhong Wang Xiaoguang Wang Lifeng Hu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2174-2185,共12页
Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-... Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications. 展开更多
关键词 adaptive reliability evaluation adaptive weight evaluation Kalman filter(KF) multi-source fusion optimal set selection
下载PDF
Hierarchical adaptive stereo matching algorithm for obstacle detection with dynamic programming 被引量:1
11
作者 Ming BAI Yan ZHUANG Wei WANG 《控制理论与应用(英文版)》 EI 2009年第1期41-47,共7页
An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision,... An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization. 展开更多
关键词 Stereo matching Ground control points adaptive weighted aggregation Bidirectional dynamic programming Obstacle detection based on stereo vision
下载PDF
Nonlinear combined forecasting model based on fuzzy adaptive variable weight and its application 被引量:1
12
作者 蒋爱华 梅炽 +1 位作者 鄂加强 时章明 《Journal of Central South University》 SCIE EI CAS 2010年第4期863-867,共5页
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept... In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system. 展开更多
关键词 nonlinear combined forecasting nonlinear time series method of fuzzy adaptive variable weight relative error adaptive control coefficient
下载PDF
Modified Adaptive Weighted Averaging Filtering Algorithm for Noisy Image Sequences
13
作者 李伟锋 郁道银 陈晓冬 《Transactions of Tianjin University》 EI CAS 2007年第2期103-106,共4页
In order to avoid the influence of noise variance on the filtering performances, a modified adaptive weighted averaging (MAWA) filtering algorithm is proposed for noisy image sequences. Based upon adaptive weighted av... In order to avoid the influence of noise variance on the filtering performances, a modified adaptive weighted averaging (MAWA) filtering algorithm is proposed for noisy image sequences. Based upon adaptive weighted averaging pixel values in consecutive frames, this algorithm achieves the filtering goal by assigning smaller weights to the pixels with inappropriate estimated motion trajectory for noise. It only utilizes the intensity of pixels to suppress noise and accordingly is independent of noise variance. To evaluate the performance of the proposed filtering algorithm, its mean square error and percentage of preserved edge points were compared with those of traditional adaptive weighted averaging and non-adaptive mean filtering algorithms under different noise variances. Relevant results show that the MAWA filtering algorithm can preserve image structures and edges under motion after attenuating noise, and thus may be used in image sequence filtering. 展开更多
关键词 adaptive weighted averaging image sequences motion trajectory noise variance
下载PDF
Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
14
作者 HUANG Haixin KONG Chang 《沈阳理工大学学报》 CAS 2014年第4期75-80,共6页
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar... Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly. 展开更多
关键词 fuzzy C-means clustering adaptive feature weighted ENTROPY wind power prediction
下载PDF
Anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base
15
作者 XUE Haijian WANG Tao +2 位作者 CAI Xinghui WANG Jintao LIU Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1333-1342,共10页
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat... The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness. 展开更多
关键词 strapdown inertial navigation system(SINS) initial alignment ANTI-INTERFERENCE rocking base adaptive recursive weighted least squares(ARWLS)
下载PDF
Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization
16
作者 Zhonghao Qian Hanyi Ma +5 位作者 Jun Rao Jun Hu Lichengzi Yu Caoyi Feng Yunxu Qiu Kemo Ding 《Energy Engineering》 EI 2023年第9期2013-2027,共15页
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p... The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm. 展开更多
关键词 Offshore wind farms improved particle swarm optimization reactive power optimization adaptive weight asynchronous learning factor voltage stability
下载PDF
WACPN:A Neural Network for Pneumonia Diagnosis
17
作者 Shui-Hua Wang Muhammad Attique Khan +1 位作者 Ziquan Zhu Yu-Dong Zhang 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期21-34,共14页
Community-acquired pneumonia(CAP)is considered a sort of pneumonia developed outside hospitals and clinics.To diagnose community-acquired pneumonia(CAP)more efficiently,we proposed a novel neural network model.We intr... Community-acquired pneumonia(CAP)is considered a sort of pneumonia developed outside hospitals and clinics.To diagnose community-acquired pneumonia(CAP)more efficiently,we proposed a novel neural network model.We introduce the 2-dimensional wavelet entropy(2d-WE)layer and an adaptive chaotic particle swarm optimization(ACP)algorithm to train the feed-forward neural network.The ACP uses adaptive inertia weight factor(AIWF)and Rossler attractor(RA)to improve the performance of standard particle swarm optimization.The final combined model is named WE-layer ACP-based network(WACPN),which attains a sensitivity of 91.87±1.37%,a specificity of 90.70±1.19%,a precision of 91.01±1.12%,an accuracy of 91.29±1.09%,F1 score of 91.43±1.09%,an MCC of 82.59±2.19%,and an FMI of 91.44±1.09%.The AUC of this WACPN model is 0.9577.We find that the maximum deposition level chosen as four can obtain the best result.Experiments demonstrate the effectiveness of both AIWF and RA.Finally,this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models.Our model will be distributed to the cloud computing environment. 展开更多
关键词 Wavelet entropy community-acquired pneumonia neural network adaptive inertia weight factor rossler attractor particle swarm optimization
下载PDF
Novel high-safety aeroengine performance predictive control method based on adaptive tracking weight
18
作者 Qian CHEN Hanlin SHENG +1 位作者 Jie ZHANG Jiacheng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期352-374,共23页
Increasing attention has been attracted to the dynamic performance and safety of advanced performance predictive control systems of the next-generation aeroengine.The latest research demonstrates that Subspace-based I... Increasing attention has been attracted to the dynamic performance and safety of advanced performance predictive control systems of the next-generation aeroengine.The latest research demonstrates that Subspace-based Improved Model Predictive Control(SIMPC)can overcome the difficulty in solving the predictive model in MPC/NMPC applications.However,applying constant design parameters cannot maintain consistent control effects in all states.Meanwhile,the designed system relies too much on sensor-measured data,and thus it is difficult to thoroughly validate the safety of the system because of its high complexity.This means that any potential hardware/software faults will endanger the engine.Therefore,this paper first presents a novel nonlinear mapping relationship to adaptively tune the tracking weight online with the change of Power Lever Angle(PLA)and real-time relative tracking error.Thus,without introducing additional design parameters,an Adaptive Tracking Weight-based SIMPC(ATW-SIMPC)controller is designed to improve the control performance in all operating states effectively.Then,a Primary/Backup Hybrid Control(PBHC)strategy with the ATW-SIMPC controller as the primary system and the traditional speed(Nf)controller as the backup system is proposed to ensure safety.The designed affiliated switching controller and the real-time monitor therein can be used to realize reasonable and smooth switching between primary/backup systems,so as to avoid bump transition.The PBHC system switches to the Nf controller when the ATW-SIMPC controller is wrong because of potential hardware/software faults;otherwise,the ATW-SIMPC controller keeps acting on the engine.The main results prove that the ATW-SIMPC controller with the optimal nonlinear mapping relationship,compared with the existing SIMPC controller,uplifts the dynamic control performance by 32%and reduces overshoots to an allowable limit,resulting in a better control effect in full state.The comparison results consistently indicate that the PBHC can guarantee engine safety in occurrence of hardware/software faults,such as sensor/onboard adaptive model faults.The approach proposed is applicable to the design of a model-based engine intelligent control system. 展开更多
关键词 AEROENGINE Model predictive control Hybrid system adaptive weight SAFETY
原文传递
Dense Mapping From an Accurate Tracking SLAM 被引量:4
19
作者 Weijie Huang Guoshan Zhang Xiaowei Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1565-1574,共10页
In recent years, reconstructing a sparse map from a simultaneous localization and mapping(SLAM) system on a conventional CPU has undergone remarkable progress. However,obtaining a dense map from the system often requi... In recent years, reconstructing a sparse map from a simultaneous localization and mapping(SLAM) system on a conventional CPU has undergone remarkable progress. However,obtaining a dense map from the system often requires a highperformance GPU to accelerate computation. This paper proposes a dense mapping approach which can remove outliers and obtain a clean 3D model using a CPU in real-time. The dense mapping approach processes keyframes and establishes data association by using multi-threading technology. The outliers are removed by changing detections of associated vertices between keyframes. The implicit surface data of inliers is represented by a truncated signed distance function and fused with an adaptive weight. A global hash table and a local hash table are used to store and retrieve surface data for data-reuse. Experiment results show that the proposed approach can precisely remove the outliers in scene and obtain a dense 3D map with a better visual effect in real-time. 展开更多
关键词 adaptive weights data association dense mapping hash table simultaneous localization and mapping(SLAM)
下载PDF
Study on gas monitoring technology based on information fusion 被引量:3
20
作者 HOU You-fu MENG Qing-rui +1 位作者 TONG Min-ming LIANG Tao 《Journal of Coal Science & Engineering(China)》 2010年第1期57-63,共7页
In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology,... In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring. 展开更多
关键词 information fusion gas monitoring adaptive weighted algorithm BP neura network
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部