Fly ash(FA) was utilized to hydrothermally synthesize FA based Al-substituted tobermorites, and was combined with raw materials of FA and municipal solid waste incineration fly ash(MSWI) to hydrothermally synthesize F...Fly ash(FA) was utilized to hydrothermally synthesize FA based Al-substituted tobermorites, and was combined with raw materials of FA and municipal solid waste incineration fly ash(MSWI) to hydrothermally synthesize FA-MSWI based Al-substituted tobermorites. Then optimum samples named FA-T and FM-T were selected, correspondingly. Their intrinsic properties as well as their solidification/stabilization and adsorption of heavy metals were studied. The experimental results showed that the specific surface area of FA-T and FM-T was 28.259 m^2/g and 45.939 m^2/g, respectively. Their pore size distribution, particle size distribution, and median particle size were approximately the same. FA-T and FM-T both had great potential of solidification/stabilization heavy metal to dispose hazardous solid waste. Further, FA-T and FM-T also showed good adsorption efficiency for heavy metals Pb2+ and Cu2+ as adsorbent to treat waste water.展开更多
The present work discusses the mineralogy, saturated adsorption of ammonium and adsorption of heavy metal ions (Cu^2+, Pb^2+ and Zn^2+) on industrial vermiculite samples from the Yuli Mine in Xinjiang Autonomous ...The present work discusses the mineralogy, saturated adsorption of ammonium and adsorption of heavy metal ions (Cu^2+, Pb^2+ and Zn^2+) on industrial vermiculite samples from the Yuli Mine in Xinjiang Autonomous Region. The saturated adsorption capacity of ammonium and the affection factors of adsorption of Cu^2+, Pb^2+ and Zn^2+ are discussed on the basis of the mineralogical characteristics of the industrial vermiculite samples. The saturated adsorption capacities of ammonium are between 56.02 and 98.42 mmol/100g. The time of adsorption equilibrium is about 30-60 min, and the pH values and concentration of the ion solution significantly affect the adsorption capacities of the heavy metal ions. The adsorption capabilities of the heavy metal ions on industrial vermiculite are almost the same in the low ion concentration solutions, characterized by a sequence of Zn^2+〉Pb^2+〉Cu^2+ for adsorption capacity in solutions with relatively high ion concentration. The results have practical significance for the application of the industrial vermiculite to treating wastewater containing ammonium or heavy metal ions.展开更多
The breakthrough and stoichiometric SO2 adsorption efficiencies of a biomass supported Na2CO3 system (80 wt %Na2CO3/straw) have reached 48.9 % and 80.6 % respectively at a desulfurization temperature of 80C.
Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found ...Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.展开更多
Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of ...Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability.展开更多
Perfuorinated compounds(PFCs)are toxic and widely present in the environment,and therefore effective adsorbents are required to remove PFCs from environmental water.In the present study,a new type of fuorinated biomas...Perfuorinated compounds(PFCs)are toxic and widely present in the environment,and therefore effective adsorbents are required to remove PFCs from environmental water.In the present study,a new type of fuorinated biomass materials was synthesized via an ingenious fuorosilanization reaction.These adsorbents were applied for the adsorption of 13typical PFCs,including perfuorocarboxylic acids(PFCAs)and perfuorosulfonic acids(PFSAs).By comparing their adsorption performance,Fluorinated cedar slag(FCS)was discovered to have the best absorption efficiency and enabled highly efficient enrichment of PFCs.The adsorption recovery of FCS with the investigated PFCs is greater than 90%under the optimal adsorption condition.Ascribed to the high affinity of F-F sorbent-sorbate interaction,FCS had good adsorption capacities of PFCs from aqueous solution,with the maximum adsorption capacity of 15.80 mg/g for PFOS and 10.71 mg/g for PFOA,respectively.Moreover,the adsorption time could be achieved in a short time(8 min).Using the FCS absorbent,an innovative FCS-solid phase extraction assisted with high performance liquid chromatography-electrospray-tandem mass spectrometry(FCS-SPE-HPLC-ESI-MS/MS)method was first developed to sensitively detect PFCs in the environmental water samples.The intra-day and inter-day recovery rates of the 13 compounds ranged from 90.7%-104.3%,with the RSD of 2.1%-4.7%(intra-day)and 2.5%-8.5%(inter-day),respectively.This research demonstrates the potential of the newly fuoro-functionalized plant biomass to adsorb PFCs from environmental water,with the advantages of high adsorption efficiencies,high antiinterference,easy operation and low economic cost.展开更多
Heavy metals(HMs)represent pervasive and highly toxic environmental pollutants,known for their long latency periods and high toxicity levels,which pose significant challenges for their removal and degradation.Therefor...Heavy metals(HMs)represent pervasive and highly toxic environmental pollutants,known for their long latency periods and high toxicity levels,which pose significant challenges for their removal and degradation.Therefore,the removal of heavy metals from the environment is crucial to ensure the water safety.Biochar materials,known for their intricate pore structures and abundant oxygen-containing functional groups,are frequently harnessed for their effectiveness in mitigating heavy metal contamination.However,conventional tests for optimizing biochar synthesis and assessing their heavy metal adsorption capabilities can be both costly and tedious.To address this challenge,this paper proposes a data-driven machine learning(ML)approach to identify the optimal biochar preparation and adsorption reaction conditions,with the ultimate goal of maximizing their adsorption capacity.By utilizing a data set comprising 476 instances of heavy metal absorption by biochar,seven classical integrated models and one stacking model were trained to rapidly predict the efficiency of heavy metal adsorption by biochar.These predictions were based on diverse physicochemical properties of biochar and the specific adsorption reaction conditions.The results demonstrate that the stacking model,which integrates multiple algorithms,allows for training with fewer samples to achieve higher prediction accuracy and improved generalization ability.展开更多
The geopolymer synthesized by alkali-activated fly ash was firstly used as a novel photocatalyst for degradation of methylene blue (MB) dye from wastewater. The geopolymer is composed of nanoparticulates with an ave...The geopolymer synthesized by alkali-activated fly ash was firstly used as a novel photocatalyst for degradation of methylene blue (MB) dye from wastewater. The geopolymer is composed of nanoparticulates with an average particle size of about 50 nm, More than 90% of pore volume in the fly ash-based geopolymet predominately centralized on the pore size in the range of 17-700 nm. The degradation efficiency of MB dye by fly ash-based geopolymer catalyst was up to 92.79% under UV irradiation due to the synergistic effect of adsorption and semiconductor photocatalysis. The pseudo-first-order and pseudo-second-order rate equations as well as intra-particle diffusion rate equation were employed to correlate analysis for the adsorption kinetics of MB dye, The experimental data agreed well with pseudo-second-order rate equation in both cases of with UV and without UV irradiations. The intra-particle diffusion process is not the rate determining step. The photocatalytic degradation of MB dye in solution obeys third-order reaction kinetics.展开更多
The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performa...The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients.展开更多
In the paper entitled"Efficient adsorption of Mn(Ⅱ)by layered double hydroxides intercalated with di ethylenetriaminepentaacetic acid and the mechanistic study"in Journal of Environmental Sciences,volume 85...In the paper entitled"Efficient adsorption of Mn(Ⅱ)by layered double hydroxides intercalated with di ethylenetriaminepentaacetic acid and the mechanistic study"in Journal of Environmental Sciences,volume 85,page 56-65,there were problems with mathematical notation and dimensional errors in the calculation for Giibbs free energy.In Section 2.5:Adsorption isotherms and thermodynamics studies,authors calculated the Gibbs free energy change(△G°)展开更多
基金Funded by the National Key Research and Development Program of China During the Thirteenth Five-Year Plan Period(No.2016YFC0700802)the National Natural Science Foundation of China(No.51478328)+1 种基金Natural Science Foundation of Shanghai(No.17ZR1442000)the Fundamental Research Funds for the Central Universities of China(No.22120180087)
文摘Fly ash(FA) was utilized to hydrothermally synthesize FA based Al-substituted tobermorites, and was combined with raw materials of FA and municipal solid waste incineration fly ash(MSWI) to hydrothermally synthesize FA-MSWI based Al-substituted tobermorites. Then optimum samples named FA-T and FM-T were selected, correspondingly. Their intrinsic properties as well as their solidification/stabilization and adsorption of heavy metals were studied. The experimental results showed that the specific surface area of FA-T and FM-T was 28.259 m^2/g and 45.939 m^2/g, respectively. Their pore size distribution, particle size distribution, and median particle size were approximately the same. FA-T and FM-T both had great potential of solidification/stabilization heavy metal to dispose hazardous solid waste. Further, FA-T and FM-T also showed good adsorption efficiency for heavy metals Pb2+ and Cu2+ as adsorbent to treat waste water.
基金the National Natural Science Foundation of China (Grant 40102006).
文摘The present work discusses the mineralogy, saturated adsorption of ammonium and adsorption of heavy metal ions (Cu^2+, Pb^2+ and Zn^2+) on industrial vermiculite samples from the Yuli Mine in Xinjiang Autonomous Region. The saturated adsorption capacity of ammonium and the affection factors of adsorption of Cu^2+, Pb^2+ and Zn^2+ are discussed on the basis of the mineralogical characteristics of the industrial vermiculite samples. The saturated adsorption capacities of ammonium are between 56.02 and 98.42 mmol/100g. The time of adsorption equilibrium is about 30-60 min, and the pH values and concentration of the ion solution significantly affect the adsorption capacities of the heavy metal ions. The adsorption capabilities of the heavy metal ions on industrial vermiculite are almost the same in the low ion concentration solutions, characterized by a sequence of Zn^2+〉Pb^2+〉Cu^2+ for adsorption capacity in solutions with relatively high ion concentration. The results have practical significance for the application of the industrial vermiculite to treating wastewater containing ammonium or heavy metal ions.
文摘The breakthrough and stoichiometric SO2 adsorption efficiencies of a biomass supported Na2CO3 system (80 wt %Na2CO3/straw) have reached 48.9 % and 80.6 % respectively at a desulfurization temperature of 80C.
基金supported by National Basic Research Program (973) of China (No. 2013CB933200)the National Natural Science Foundation of China (Nos. 21671197, 51472260)the Research Grant (No. 16ZR1440800) from Shanghai Science and Technology Commission
文摘Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.
基金financially supported by the major Project of the national science and technology of China (No. SQ2017YFGX010248)the Beijing Natural Science Foundation (No. 2172011)
文摘Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability.
基金supported by the National Natural Science Foundation of China (No.22276221,and 21675176)the Fundamental Research Funds for the Central Universities,and South-Central Minzu University (No.CZP21002)。
文摘Perfuorinated compounds(PFCs)are toxic and widely present in the environment,and therefore effective adsorbents are required to remove PFCs from environmental water.In the present study,a new type of fuorinated biomass materials was synthesized via an ingenious fuorosilanization reaction.These adsorbents were applied for the adsorption of 13typical PFCs,including perfuorocarboxylic acids(PFCAs)and perfuorosulfonic acids(PFSAs).By comparing their adsorption performance,Fluorinated cedar slag(FCS)was discovered to have the best absorption efficiency and enabled highly efficient enrichment of PFCs.The adsorption recovery of FCS with the investigated PFCs is greater than 90%under the optimal adsorption condition.Ascribed to the high affinity of F-F sorbent-sorbate interaction,FCS had good adsorption capacities of PFCs from aqueous solution,with the maximum adsorption capacity of 15.80 mg/g for PFOS and 10.71 mg/g for PFOA,respectively.Moreover,the adsorption time could be achieved in a short time(8 min).Using the FCS absorbent,an innovative FCS-solid phase extraction assisted with high performance liquid chromatography-electrospray-tandem mass spectrometry(FCS-SPE-HPLC-ESI-MS/MS)method was first developed to sensitively detect PFCs in the environmental water samples.The intra-day and inter-day recovery rates of the 13 compounds ranged from 90.7%-104.3%,with the RSD of 2.1%-4.7%(intra-day)and 2.5%-8.5%(inter-day),respectively.This research demonstrates the potential of the newly fuoro-functionalized plant biomass to adsorb PFCs from environmental water,with the advantages of high adsorption efficiencies,high antiinterference,easy operation and low economic cost.
基金financially supported by the National Key Research and Development Program of China(No.2021YFC1808902)the National Natural Science Foundation of China(No.42307546)+1 种基金the Key Research and Development Program of Shaanxi Province(China)(Nos.2019NY200,2020ZDLNY06-06,and 2020ZDLNY07-10)the Agricultural Technology Innovation Driven Program of Shaanxi Province(China)(No.NYKJ-2022-XA-02).
文摘Heavy metals(HMs)represent pervasive and highly toxic environmental pollutants,known for their long latency periods and high toxicity levels,which pose significant challenges for their removal and degradation.Therefore,the removal of heavy metals from the environment is crucial to ensure the water safety.Biochar materials,known for their intricate pore structures and abundant oxygen-containing functional groups,are frequently harnessed for their effectiveness in mitigating heavy metal contamination.However,conventional tests for optimizing biochar synthesis and assessing their heavy metal adsorption capabilities can be both costly and tedious.To address this challenge,this paper proposes a data-driven machine learning(ML)approach to identify the optimal biochar preparation and adsorption reaction conditions,with the ultimate goal of maximizing their adsorption capacity.By utilizing a data set comprising 476 instances of heavy metal absorption by biochar,seven classical integrated models and one stacking model were trained to rapidly predict the efficiency of heavy metal adsorption by biochar.These predictions were based on diverse physicochemical properties of biochar and the specific adsorption reaction conditions.The results demonstrate that the stacking model,which integrates multiple algorithms,allows for training with fewer samples to achieve higher prediction accuracy and improved generalization ability.
基金financially supported by Industrial Key Project of Shaanxi Province(No.2010K01-080)Open Fund of State Key Laboratory of Architecture Science and Technology in West China(XAUAT)+1 种基金Xi'an University of Architecture and Technology(No.10KF05)Scientific Research Program Funded by Shaanxi Provincial Education Department(No.12JK0579)
文摘The geopolymer synthesized by alkali-activated fly ash was firstly used as a novel photocatalyst for degradation of methylene blue (MB) dye from wastewater. The geopolymer is composed of nanoparticulates with an average particle size of about 50 nm, More than 90% of pore volume in the fly ash-based geopolymet predominately centralized on the pore size in the range of 17-700 nm. The degradation efficiency of MB dye by fly ash-based geopolymer catalyst was up to 92.79% under UV irradiation due to the synergistic effect of adsorption and semiconductor photocatalysis. The pseudo-first-order and pseudo-second-order rate equations as well as intra-particle diffusion rate equation were employed to correlate analysis for the adsorption kinetics of MB dye, The experimental data agreed well with pseudo-second-order rate equation in both cases of with UV and without UV irradiations. The intra-particle diffusion process is not the rate determining step. The photocatalytic degradation of MB dye in solution obeys third-order reaction kinetics.
文摘The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients.
基金funded by the National Natural Science Foundation of China(Nos.31971551,31470573 and 31070478)the Tianjin Key Projects of Scientific and Technological Support(Nos.17YFZCNC00220 and 18YFZCNC01270)
文摘In the paper entitled"Efficient adsorption of Mn(Ⅱ)by layered double hydroxides intercalated with di ethylenetriaminepentaacetic acid and the mechanistic study"in Journal of Environmental Sciences,volume 85,page 56-65,there were problems with mathematical notation and dimensional errors in the calculation for Giibbs free energy.In Section 2.5:Adsorption isotherms and thermodynamics studies,authors calculated the Gibbs free energy change(△G°)