The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for num...The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise.展开更多
Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically s...Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains.展开更多
Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribu...Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase.展开更多
To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(d...To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.展开更多
The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level(OASPL).The results demonstrate th...The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level(OASPL).The results demonstrate that when the circular rings cover near 2/3 of the width of the blade tips of the rotor in the axis direction,the rotor has the lowest OASPL and the related total pressure efficiency and flow mass rate are better than the corresponding values obtained for a reference rotor without a circular ring.With increasing the width of the circular ring in the axis direction,the tip vortex around the trailing edge of the blade tip becomes smaller and finally disappears.Meanwhile,a separated flow field arises gradually and then grows in size around the middle of the junction of the blade tips with the ring.When the circular rings cover nearly 2/3 s of the width of the blade tips of the fan in the axis direction,the extension of the separated flow around the blade’s tip attains a minimum.展开更多
Purpose–This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different ...Purpose–This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different speed levels.Design/methodology/approach–Based on large eddy simulation(LES)method and Kirchhoff–Ffowcs Williams and Hawkings(K-FWH)equations,the characteristics of dipole and quadrupole sound sources of maglev trains at different speed levels were simulated and analyzed by constructing reasonable penetrable integral surface.Findings–The spatial disturbance resulting from the separation of the boundary layer in the streamlined area of the tail car is the source of aerodynamic sound of the maglev train.The dipole sources of the train are mainly distributed around the radio terminals of the head and tail cars of the maglev train,the bottom of the arms of the streamlined parts of the head and tail cars and the nose tip area of the streamlined part of the tail car,and the quadrupole sources are mainly distributed in the wake area.When the train runs at three speed levels of 400,500 and 600 km$h1,respectively,the radiated energy of quadrupole source is 62.4%,63.3%and 71.7%,respectively,which exceeds that of dipole sources.Originality/value–This study can help understand the aerodynamic noise characteristics generated by the high-speed maglev train and provide a reference for the optimization design of its aerodynamic shape.展开更多
This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise...This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise in this area has been excavated.The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities,each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain.The far-field noise results suggest that in the speed range of 200−350 km/h,the aerodynamic noise mechanism in the bogie area is the same.Cavity noise is the main noise mechanism in the foremost bogie area,and the bogie divides the bogie cabin into two cavities,thereby changing the aerodynamic noise in this area.展开更多
The high aerodynamic noise induced by automotive air conditioning systems has important effects on the ride comfort, and the centrifugal fan is the largest noise source in these systems. It is very important to reduce...The high aerodynamic noise induced by automotive air conditioning systems has important effects on the ride comfort, and the centrifugal fan is the largest noise source in these systems. It is very important to reduce the aerodynamic noise generated by the centrifugal fan. The flow field and the sound field on the whole centrifugal fan configuration have been carried out using the computational fluid dynamics. Simulation results show that the sound pressure level near the outlet of the centrifugal fan is too high. Based on the relationship between flow characteristics and the aerodynamic noise, four parameters of the centrifugal fan, i.e., impeller blade's outlet angle 0, volute tongue's gap t, collector inclination angle fl, and rotating speed n, were selected as design variables and optimized using response surface methodology. While keeping the function of flow rate unchanged, the peak noise level is reduced by 8 dB or 10.8%. The noise level is satisfactorily reduced.展开更多
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform rel...The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design.展开更多
In this paper,the unsteady flow around a high-speed train is numerically simulated by detached eddy simulation method(DES),and the far-field noise is predicted using the Ffowcs Williams-Hawkings(FW-H)acoustic model.Th...In this paper,the unsteady flow around a high-speed train is numerically simulated by detached eddy simulation method(DES),and the far-field noise is predicted using the Ffowcs Williams-Hawkings(FW-H)acoustic model.The reliability of the numerical calculation is verified by wind tunnel experiments.The superposition relationship between the far-field radiated noise of the local aerodynamic noise sources of the high-speed train and the whole noise source is analyzed.Since the aerodynamic noise of high-speed trains is derived from its different components,a stepwise calculation method is proposed to predict the aerodynamic noise of high-speed trains.The results show that the local noise sources of high-speed trains and the whole noise source conform to the principle of sound source energy superposition.Using the head,middle and tail cars of the high-speed train as noise sources,different numerical models are established to obtain the far-field radiated noise of each aerodynamic noise source.The far-field total noise of high-speed trains is predicted using sound source superposition.A step-by-step calculation of each local aerodynamic noise source is used to obtain the superimposed value of the far-field noise.This is consistent with the far-field noise of the whole train model’s aerodynamic noise.The averaged sound pressure level of the far-field longitudinal noise measurement points differs by 1.92 dBA.The step-by-step numerical prediction method of aerodynamic noise of high-speed trains can provide a reference for the numerical prediction of aerodynamic noise generated by long marshalling high-speed trains.展开更多
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-H...Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.展开更多
Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In suc...Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.展开更多
The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are...The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications.展开更多
In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow f...In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation(LES)technique.Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion.Based on this,the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.Finally,the far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings(FW-H)equation,and the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream components occurs,the pressure fluctuation is more intense,resulting in strong dipole sources.The far-field aerodynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz.The peaks in the frequency spectrum are mainly generated by the base frame,balance arm and the rear strip,which are also the main contributors to the aerodynamic noise.展开更多
Aerodynamic noise is the dominant noise source of the high-speed train.It not only seriously affects the passenger comfort and people’s normal life along the railway line,but also may cause fatigue damage to the surr...Aerodynamic noise is the dominant noise source of the high-speed train.It not only seriously affects the passenger comfort and people’s normal life along the railway line,but also may cause fatigue damage to the surrounding equipment and buildings.This manuscript carried out the simulation and experimental study on the external aerodynamic noise of high-speed train,in order to increase the understanding of the noise and hence to be better able to control it.The on-line tests were performed to verify that it is reasonable to simplify the high-speed train model.The turbulent air flow model was then developed,and the external steady flow field was computed by Realizable k-εturbulence model.Based on the steady flow field,aerodynamic noise sources on the train surface and the external transient flow field were calculated by broadband acoustics source model and large eddy simulation(LES)respectively.The pressures on the train surface were obtained from the results of the transient model.Considering the transient flow field,the far-field aerodynamic noise generated by the high-speed train was finally obtained based on Lighthill-Curle theory.Through the comparison between simulations and on-line tests,it is shown that the numerical model gives reliable aerodynamic noise predictions.This research is significant to the study and control of the aerodynamic noise of high-speed train.展开更多
Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics.The conventional prediction methods based on numerical simulation often demand huge computation...Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics.The conventional prediction methods based on numerical simulation often demand huge computational resources,which are difficult to balance between accuracy and efficiency.Here,we present a data-driven deep neural network(DNN)method to realize fast aerodynamic noise prediction while maintaining accuracy.The proposed deep learning method can predict the spatial distributions of aerodynamic noise information under different working conditions.Based on the large eddy simulation turbulence model and the Ffowcs Williams-Hawkings acoustic analogy theory,a dataset composed of 1216samples is established.With reference to the deep learning method,a DNN framework is proposed to map the relationship between spatial coordinates,inlet velocity and overall sound pressure level.The root-mean-square-errors of prediction are below 0.82 dB in the test dataset,and the directivity of aerodynamic noise predicted by the DNN framework are basically consistent with the numerical simulation.This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.展开更多
Aerodynamic noise has been impairing the comfort of passengers in automobiles.Studies have shown that the aerodynamic noise is generated by the separation of the flow and the generation of the longitudinal vortex at t...Aerodynamic noise has been impairing the comfort of passengers in automobiles.Studies have shown that the aerodynamic noise is generated by the separation of the flow and the generation of the longitudinal vortex at the front pillar(A-pillar)and the door mirror.To remove the effects of the door mirror and extract the longitudinal vortex from A-pillar,studies employ the delta wing model.This research also employed the model and observed relations between the generated sound from the vortex at the A-pillar and the surface pressure fluctuation of the wing.The experiment was carried out in a wind tunnel of the Japan Aerospace Exploration Agency(JAXA)wind tunnel using the delta wing model.The radiated sound was measured using a far-field microphone to characterize the sound,and microphone array to conduct sound source exploration.Distribution of surface pressure fluctuation was measured using electret condenser microphones.Results showed that the radiated sound has a characteristic of dipole sound,and broadband sound from 1 kHz is radiated from the apex of the wing.Those indicate that sound generated from the apex of the delta wing was scattered at the surface of the delta wing,which follows the Lighthill-Curle theory.Surface pressure fluctuation with high fluctuation was distributed following the cone-like shape of the longitudinal vortex.Their peaks moved to the apex with the frequency increase.Coherence between far-field sound and surface pressure fluctuation was calculated.The point which is 70 mm inward from the apex showed higher value than those at the apex.As the diameter of the longitudinal vortex grows at the downstream,it is considered that a certain vortex scale radiates the most noise.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
The purpose of this study is to determine a suitable modeling method to make computational fluid dynamics(CFD)simulation more efficient for aeroacoustics optimization of the bogie region of high-speed trains.To this e...The purpose of this study is to determine a suitable modeling method to make computational fluid dynamics(CFD)simulation more efficient for aeroacoustics optimization of the bogie region of high-speed trains.To this end,four modeling methods are considered,which involve different geometry simplifications and boundary condition specifications.The corresponding models are named the three-car marshalling model,computational domain shortening model,carbody shortening model,and sub-domain model.Combining the detached eddy simulation(DES)model and Ffowcs Williams-Hawkings(FW-H)equation,the unsteady flow field and far-field noise of the four models are predicted.To evaluate the effect of the different modeling methods,the time-averaged flow field,fluctuating flow field,and far-field noise results of the four models are compared and analyzed in detail with the results of the three-car marshalling model used as basis for comparison.The results show that the flow field results of the bogie region predicted by the four models have relatively high consistency.However,the usage of the non-time varying outlet boundary conditions in the computational domain shortening model and sub-domain model could affect the pressure fluctuation on the upstream carbody surface.When only the bogie region is used as the source surface,the differences between the far-field noise results of the three simplified models and the three-car marshalling model are all within 1 dB;when the train head is used as the source surface,the results of the carbody shortening model and the three-car marshalling model are more consistent.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.12104153 and 51765017)China Postdoctoral Science Foundation(Grant No.2021M701963)Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province,China(Grant No.20204BCJL23034).
文摘The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise.
基金supported by National Natural Science Foundation of China(12172308)National Key Research and Development Program of China(2020YFA0710902).
文摘Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains.
文摘Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase.
基金supported by the National Natural Science Foundation Project under Grant Numbers[51966018,51466015].
文摘To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.
基金supported by the Guiding Project of Scientific Research Plan of Hubei Education Department of China[Grant No.B2020227].
文摘The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level(OASPL).The results demonstrate that when the circular rings cover near 2/3 of the width of the blade tips of the rotor in the axis direction,the rotor has the lowest OASPL and the related total pressure efficiency and flow mass rate are better than the corresponding values obtained for a reference rotor without a circular ring.With increasing the width of the circular ring in the axis direction,the tip vortex around the trailing edge of the blade tip becomes smaller and finally disappears.Meanwhile,a separated flow field arises gradually and then grows in size around the middle of the junction of the blade tips with the ring.When the circular rings cover nearly 2/3 s of the width of the blade tips of the fan in the axis direction,the extension of the separated flow around the blade’s tip attains a minimum.
基金The research was supported by the National Key Research and Development Program(Grant No.2020YFA0710903)the Financial Funding Project for Central Colleges and Universities(Grant No.202045014)the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(Grant No.P2019J008).
文摘Purpose–This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different speed levels.Design/methodology/approach–Based on large eddy simulation(LES)method and Kirchhoff–Ffowcs Williams and Hawkings(K-FWH)equations,the characteristics of dipole and quadrupole sound sources of maglev trains at different speed levels were simulated and analyzed by constructing reasonable penetrable integral surface.Findings–The spatial disturbance resulting from the separation of the boundary layer in the streamlined area of the tail car is the source of aerodynamic sound of the maglev train.The dipole sources of the train are mainly distributed around the radio terminals of the head and tail cars of the maglev train,the bottom of the arms of the streamlined parts of the head and tail cars and the nose tip area of the streamlined part of the tail car,and the quadrupole sources are mainly distributed in the wake area.When the train runs at three speed levels of 400,500 and 600 km$h1,respectively,the radiated energy of quadrupole source is 62.4%,63.3%and 71.7%,respectively,which exceeds that of dipole sources.Originality/value–This study can help understand the aerodynamic noise characteristics generated by the high-speed maglev train and provide a reference for the optimization design of its aerodynamic shape.
基金Project(2017YFB1201103)supported by the National Key Research and Development Plan of ChinaProject(2019zzts540)supported by the Graduate Student Independent Innovation Project of Central South University,China。
文摘This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise in this area has been excavated.The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities,each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain.The far-field noise results suggest that in the speed range of 200−350 km/h,the aerodynamic noise mechanism in the bogie area is the same.Cavity noise is the main noise mechanism in the foremost bogie area,and the bogie divides the bogie cabin into two cavities,thereby changing the aerodynamic noise in this area.
基金Project(50975083) supported by the National Natural Science Foundation of ChinaProject(61075001) supported by China State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyProject(201-IV-068) supported by the Fundamental Research Funds for the Central Universities,China
文摘The high aerodynamic noise induced by automotive air conditioning systems has important effects on the ride comfort, and the centrifugal fan is the largest noise source in these systems. It is very important to reduce the aerodynamic noise generated by the centrifugal fan. The flow field and the sound field on the whole centrifugal fan configuration have been carried out using the computational fluid dynamics. Simulation results show that the sound pressure level near the outlet of the centrifugal fan is too high. Based on the relationship between flow characteristics and the aerodynamic noise, four parameters of the centrifugal fan, i.e., impeller blade's outlet angle 0, volute tongue's gap t, collector inclination angle fl, and rotating speed n, were selected as design variables and optimized using response surface methodology. While keeping the function of flow rate unchanged, the peak noise level is reduced by 8 dB or 10.8%. The noise level is satisfactorily reduced.
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
基金Projects(50975289,51275531)supported by the National Natural Science Foundation of ChinaProject(201104514)supported by the Special China Postdoctoral Science Foundation,ChinaProject(20100471229)supported by China Postdoctoral Science Foundation
文摘The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design.
基金Supported by National Key Research and Development Program of China(Grant No.2020YFA0710902)National Natural Science Foundation of China(Grant No.12172308).
文摘In this paper,the unsteady flow around a high-speed train is numerically simulated by detached eddy simulation method(DES),and the far-field noise is predicted using the Ffowcs Williams-Hawkings(FW-H)acoustic model.The reliability of the numerical calculation is verified by wind tunnel experiments.The superposition relationship between the far-field radiated noise of the local aerodynamic noise sources of the high-speed train and the whole noise source is analyzed.Since the aerodynamic noise of high-speed trains is derived from its different components,a stepwise calculation method is proposed to predict the aerodynamic noise of high-speed trains.The results show that the local noise sources of high-speed trains and the whole noise source conform to the principle of sound source energy superposition.Using the head,middle and tail cars of the high-speed train as noise sources,different numerical models are established to obtain the far-field radiated noise of each aerodynamic noise source.The far-field total noise of high-speed trains is predicted using sound source superposition.A step-by-step calculation of each local aerodynamic noise source is used to obtain the superimposed value of the far-field noise.This is consistent with the far-field noise of the whole train model’s aerodynamic noise.The averaged sound pressure level of the far-field longitudinal noise measurement points differs by 1.92 dBA.The step-by-step numerical prediction method of aerodynamic noise of high-speed trains can provide a reference for the numerical prediction of aerodynamic noise generated by long marshalling high-speed trains.
基金supported by the National Key Technology R&D Program (2009BAG12A03)Innovation Project of Chinese Academy of Sciences of China (KJCX2-EW-L02-1)
文摘Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.
基金supported by Key Research and Development Project of Shandong Province[2019GSF109084]Young Scholars Program of Shandong University[2018WLJH73].
文摘Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.
基金This work is supported by the National Key Research and Development Program of China(2020YFA0710902)Sichuan Science and Technology Program(2021YFG0214,2019YJ0227)+1 种基金Fundamental Research Funds for the Central Universities(2682021ZTPY124)State Key Laboratory of Traction Power(2019TPL_T02).
文摘The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications.
基金This work is funded by National key R&D Program China(2016YFE0205200)National Natural Foundation of China(U1834201).
文摘In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation(LES)technique.Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion.Based on this,the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.Finally,the far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings(FW-H)equation,and the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream components occurs,the pressure fluctuation is more intense,resulting in strong dipole sources.The far-field aerodynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz.The peaks in the frequency spectrum are mainly generated by the base frame,balance arm and the rear strip,which are also the main contributors to the aerodynamic noise.
基金supported by National Natural Science Foundation of China(51705068)the fundamental research funds for the central universities(N150303003)research initiation funds for the PhD of Liaoning Province(201601005).
文摘Aerodynamic noise is the dominant noise source of the high-speed train.It not only seriously affects the passenger comfort and people’s normal life along the railway line,but also may cause fatigue damage to the surrounding equipment and buildings.This manuscript carried out the simulation and experimental study on the external aerodynamic noise of high-speed train,in order to increase the understanding of the noise and hence to be better able to control it.The on-line tests were performed to verify that it is reasonable to simplify the high-speed train model.The turbulent air flow model was then developed,and the external steady flow field was computed by Realizable k-εturbulence model.Based on the steady flow field,aerodynamic noise sources on the train surface and the external transient flow field were calculated by broadband acoustics source model and large eddy simulation(LES)respectively.The pressures on the train surface were obtained from the results of the transient model.Considering the transient flow field,the far-field aerodynamic noise generated by the high-speed train was finally obtained based on Lighthill-Curle theory.Through the comparison between simulations and on-line tests,it is shown that the numerical model gives reliable aerodynamic noise predictions.This research is significant to the study and control of the aerodynamic noise of high-speed train.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0303700)the National Natural Science Foundation of China(Grants Nos.12174190,11634006,12074286,and 81127901)the Innovation Special Zone of the National Defense Science and Technology,High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures,and the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics.The conventional prediction methods based on numerical simulation often demand huge computational resources,which are difficult to balance between accuracy and efficiency.Here,we present a data-driven deep neural network(DNN)method to realize fast aerodynamic noise prediction while maintaining accuracy.The proposed deep learning method can predict the spatial distributions of aerodynamic noise information under different working conditions.Based on the large eddy simulation turbulence model and the Ffowcs Williams-Hawkings acoustic analogy theory,a dataset composed of 1216samples is established.With reference to the deep learning method,a DNN framework is proposed to map the relationship between spatial coordinates,inlet velocity and overall sound pressure level.The root-mean-square-errors of prediction are below 0.82 dB in the test dataset,and the directivity of aerodynamic noise predicted by the DNN framework are basically consistent with the numerical simulation.This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.
文摘Aerodynamic noise has been impairing the comfort of passengers in automobiles.Studies have shown that the aerodynamic noise is generated by the separation of the flow and the generation of the longitudinal vortex at the front pillar(A-pillar)and the door mirror.To remove the effects of the door mirror and extract the longitudinal vortex from A-pillar,studies employ the delta wing model.This research also employed the model and observed relations between the generated sound from the vortex at the A-pillar and the surface pressure fluctuation of the wing.The experiment was carried out in a wind tunnel of the Japan Aerospace Exploration Agency(JAXA)wind tunnel using the delta wing model.The radiated sound was measured using a far-field microphone to characterize the sound,and microphone array to conduct sound source exploration.Distribution of surface pressure fluctuation was measured using electret condenser microphones.Results showed that the radiated sound has a characteristic of dipole sound,and broadband sound from 1 kHz is radiated from the apex of the wing.Those indicate that sound generated from the apex of the delta wing was scattered at the surface of the delta wing,which follows the Lighthill-Curle theory.Surface pressure fluctuation with high fluctuation was distributed following the cone-like shape of the longitudinal vortex.Their peaks moved to the apex with the frequency increase.Coherence between far-field sound and surface pressure fluctuation was calculated.The point which is 70 mm inward from the apex showed higher value than those at the apex.As the diameter of the longitudinal vortex grows at the downstream,it is considered that a certain vortex scale radiates the most noise.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金National Natural Science Foundation of China(No.12172308)National Key Research and Development Program of China(No.2020YFA0710902).
文摘The purpose of this study is to determine a suitable modeling method to make computational fluid dynamics(CFD)simulation more efficient for aeroacoustics optimization of the bogie region of high-speed trains.To this end,four modeling methods are considered,which involve different geometry simplifications and boundary condition specifications.The corresponding models are named the three-car marshalling model,computational domain shortening model,carbody shortening model,and sub-domain model.Combining the detached eddy simulation(DES)model and Ffowcs Williams-Hawkings(FW-H)equation,the unsteady flow field and far-field noise of the four models are predicted.To evaluate the effect of the different modeling methods,the time-averaged flow field,fluctuating flow field,and far-field noise results of the four models are compared and analyzed in detail with the results of the three-car marshalling model used as basis for comparison.The results show that the flow field results of the bogie region predicted by the four models have relatively high consistency.However,the usage of the non-time varying outlet boundary conditions in the computational domain shortening model and sub-domain model could affect the pressure fluctuation on the upstream carbody surface.When only the bogie region is used as the source surface,the differences between the far-field noise results of the three simplified models and the three-car marshalling model are all within 1 dB;when the train head is used as the source surface,the results of the carbody shortening model and the three-car marshalling model are more consistent.