The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and...Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and has been approved by the Food and Drug Administration as Generally Recognized as Safe [2]. However, the violent crosslinking reaction and unstable structure at the wound site limit its clinical applications. Hence, we report a biocompatible and injectable composite hydrogel methacrylate alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine (NPG)-initiated composite hydrogel (AEC) composed of photocrosslinkable alginate, viscosity modifiers and novel white light photoinitiator, namely Eosin Y/NPG system, for instant hemorrhage control.展开更多
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of...Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
The object of this study is to investigate the effects of sodium alginate(SA)and CaCl_(2) on the physicochemical characteristics of shrimp surimi by studying gel strength,water holding capacity(WHC),as well as by text...The object of this study is to investigate the effects of sodium alginate(SA)and CaCl_(2) on the physicochemical characteristics of shrimp surimi by studying gel strength,water holding capacity(WHC),as well as by texture profile analysis(TPA).In addition,the mechanism was analyzed through chemical interactions,protein secondary structure,and microstructure.The results showed that with the addition of different concentrations of SA and CaCl_(2) to the shrimp surimi,the gel quality firstly increased and then decreased with the increase of SA and CaCl_(2) concentrations.The highest values of WHC,breaking force and gel strength were obtained with the addition of 1.2%SA or 0.1%CaCl_(2).When SA and CaCl_(2) were used in concert,the group containing 1.2%SA and 0.15%CaCl_(2) had the highest gel strength with the densest three-dimensional network structure of the gel.In addition,the results of chemical interaction analyses showed that hydrogen and ionic bonds were the main chemical bonds of shrimp surimi sol,while shrimp surimi gel mainly consisted of hydrophobic and disulfide bonds.The incorporation of SA and CaCl_(2) resulted in a significant increase in hydrophobic interactions and disulfide bonding,which could effectively improve the gel properties of shrimp surimi.展开更多
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging...The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.展开更多
We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by m...We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by mixing probiotics with sodium alginate-chitosan sol.The preparation contained complex calcium ions,which were released in the acidic environment of gastric juice,thus crosslinking to form in-situ gel.Different proportions of sodium alginate-chitosan were prepared to add to simulate gastrointestinal fluid to get the best ratio.The optimal ratio of LSC preparation was compared with traditional gel microspheres to observe the survival effect of probiotics in gastrointestinal fluid environment.Compared with sodium alginate sol,the porosity of sodium alginate-chitosan sol is lower,which is beneficial to the protection of probiotics.When the ratio of chitosan to sodium alginate is 1.5:1.5 (w/v),the protective effect is the best.The protective ability of LSC is 64 times that of traditional microspheres,and it has the potential of synergistic anti-tumor.A probiotic preparation with simple preparation process and better protection effect compared with traditional microspheres was prepared,which has joint anti-tumor potential.展开更多
Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework(MOF),alginate/MOF composite gel has captured the interest of many researchers as a tuna...Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework(MOF),alginate/MOF composite gel has captured the interest of many researchers as a tunable platform with high stability,controllable pore structure,and enhanced biological activity.Interestingly,different fromthe traditional organic or inorganic nanofillers physically trapped or chemically linked within neTtworks,MOFs crystals can not only be dispersed by crosslinking polymerization,but also support self-assembly in-situ under the help of chelating cations with alginate.The latter is influenced by multiple factors and may involve some complex mechanisms of action,which is also a topic discussed deeply in this article while summarizing different preparation routes.Furthermore,various physical and chemical levels of improvement strategies and availablemacroforms are summarized oriented towards obtaining composite gel with ideal performance.Finally,the application status of this composite system in drug delivery,wound healing and other biomedical fields is further discussed.And the current limitations and future development directions are shed light simultaneously,which may provide guidance for the vigorous development of these composite systems.展开更多
Biomass-based supramolecular hydrogels are widely used in the biomedical field due to their favorable biocompatibility and outstanding mechanical properties.However,the preparation of injectable polysaccharide-based h...Biomass-based supramolecular hydrogels are widely used in the biomedical field due to their favorable biocompatibility and outstanding mechanical properties.However,the preparation of injectable polysaccharide-based hydrogels has proven to be a significant challenge.Here we have employed a simple poor-solvent strategy to prepare alginate supramolecular hydrogels via a hierarchical self-assembly process,including micellization,micelles alignment to form nanofilament,and nanofibrils formation.The alginate supramolecular fibrillar hydrogels exhibit excellent mechanical properties and shear recoverability,meeting the requirements of injectable hydrogels.Furthermore,the presence of alginate and its fibrillar structures imparts superb hemostasis properties and the inherent biocompatibility to these hydrogels.Therefore,this simple and intriguing approach has the potential to develop polysaccharide-based hydrogels for hemostasis in wound within the biomedical fields.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calci...A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calcium ions(Ca^(2+)).The shell,composed of a chitosan/activated carbon mixture,was then coated onto the core.Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate.Scanning electron microscopy images showed the core-shell structure.The core exhibited a high water uptake ratio,facilitating the diffusion of methylene blue into the core.During the diffusion process,the methylene blue was first adsorbed by the shell and then further adsorbed by the core.Adsorption tests showed that the coreshell structure had a larger adsorption capacity than the core alone.The shell effectively enhanced the adsorption capacity to methylene blue compared to the single core.Methylene blue was adsorbed by activated carbon and chitosan in the shell,and the residual methylene blue diffused into the core and was further adsorbed.展开更多
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ...Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.展开更多
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a...The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively.展开更多
Inflammatory bowel disease(IBD)represents a chronic inflammatory condition profoundly impacting the gastrointestinal tract.Its prevalence has markedly risen in both developed and developing nations over recent decades...Inflammatory bowel disease(IBD)represents a chronic inflammatory condition profoundly impacting the gastrointestinal tract.Its prevalence has markedly risen in both developed and developing nations over recent decades.Despite the absence of definitive etiological elucidation,therapeutic strategies predominantly revolve around pharmacological interventions aimed at symptom mitigation.Alginate(AG)is a polysaccharide of marine origin that has garnered significant attention due to its inherent biocompatibility,pH sensitivity,and cross-linking.Its exploration within drug delivery systems for IBD treatment stems from its natural sourcing,non-cytotoxic nature,and economic viability.Notably,AG demonstrates facile interpolymeric cross-linking,facilitating the formation of a cohesive network conducive to sustained drug release kinetics.AG-based carrier systems for sustained drug release,and targeted drug delivery have been widely studied.This article reviews the pathogenesis of IBD and the current drugs,AG-based drug delivery systems and their properties in alleviating IBD.The prospect of further development of AG in the field of biopharmaceutical and drug delivery is prospected.展开更多
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp.and Pseudomonas sp.Owing to alginate gel forming capability,it is widely use...Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp.and Pseudomonas sp.Owing to alginate gel forming capability,it is widely used in food,textile and paper industries;and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration.This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays.However,alginate also has limitation.When in contact with physiological environment,alginate could gelate into softer structure,consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts.To cater this problem,wide range of materials have been added to alginate structure,producing sturdy composite materials.For instance,the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material,which not only possesses better mechanical properties compared to native alginate,but also grants additional healing capability and promote better tissue regeneration.In addition,drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent.In this review,preparation of alginate and alginate composite in various forms(fibre,bead,hydrogel,and 3D-printed matrices)used for biomedical application is described first,followed by the discussion of latest trend related to alginate composite utilization in wound dressing,drug delivery,and tissue engineering applications.展开更多
Background Alginate oligosaccharide(AOS)holds great potential as a novel feed supplement in farm animals.However,the effects of AOS on chicken health and the underlying mechanisms are not fully understood.This study a...Background Alginate oligosaccharide(AOS)holds great potential as a novel feed supplement in farm animals.However,the effects of AOS on chicken health and the underlying mechanisms are not fully understood.This study aimed to optimize the enzymatic preparation of AOS by using bacterial alginate lyases expressed in yeast,investigate the effects of the prepared AOS on the growth performance and gut health of broiler chickens,and reveal the underlying mechanisms.Results Five alginate lyases from bacteria were cloned into Pichia pastoris GS115 and the alginate lyase PDE9 was expressed at relatively high yield,activity and stability in P.pastoris.Animal trials were carried out using 3201-day-old male Arbor Acres broilers(four groups;8 replicates/group×10 chicks/replicate)receiving either a basal diet or the same diet supplemented with 100,200 and 400 mg/kg PDE9-prepared AOS for 42 d.The results showed that dietary supplementation of 200 mg/kg AOS displayed the highest activity in promoting the birds’ADG and ADFI(P<0.05).AOS ameliorated the intestinal morphology,absorption function and barrier function,as indicated by the enhanced(P<0.05)intestinal villus height,maltase activity,and the expression of PEPT,SGLT1,ZNT1,and occludin.AOS also increased serum insulin-like growth factor-1,ghrelin(P<0.05),and growth hormone(P<0.1).Moreover,the concentrations of acetate,isobutyrate,isovalerate,valerate,and total SCFAs in cecum of birds fed AOS were significantly higher than the control birds(P<0.05).Metagenomic analysis indicated that AOS modulated the chicken gut microbiota structure,function,and microbial interactions and promoted the growth of SCFAs-producing bacteria,for example,Dorea sp.002160985;SCFAs,especially acetate,were found positively correlated with the chicken growth performance and growth-related hormone signals(P<0.05).We further verified that AOS can be utilized by Dorea sp.to grow and to produce acetate in vitro.Conclusions We demonstrated that the enzymatically produced AOS effectively promoted broiler chicken growth performance by modulating the chicken gut microbiota structure and function.For the first time,we established the connections among AOS,chicken gut microbiota/SCFAs,growth hormone signals and chicken growth performance.展开更多
The coding product of alginate-c5-mannuronan-epimerase gene (algG gene) can catalyze the conversion of mannuronate to guluronate and determine the M/G ratio of alginate. Most of the current knowledge about genes inv...The coding product of alginate-c5-mannuronan-epimerase gene (algG gene) can catalyze the conversion of mannuronate to guluronate and determine the M/G ratio of alginate. Most of the current knowledge about genes involved in the alginate biosynthesis comes from bacterial systems. In this article, based on some algal and bacterial algG genes registered on GenBank and EMBL databases, we predicted 94 algG genes open reading frame (ORF) sequences of brown algae from the 1 000 Plant Transcriptome Sequencing Project (OneKP). By method of transcriptomic sequence analysis, gene structure and gene localization analysis, multiple sequence alignment and phylogenetic tree construction, we studied the algal algG gene family characteristics, the structure modeling and conserved motifs of AlgG protein, the origin of alginate biosyn-thesis and the variation incidents that might have happened during evolution in algae. Although there are different members in the algal algG gene family, almost all of them harbor the conserved epimerase region. Based on the phylogenetic analysis of algG genes, we proposed that brown algae acquired the alginate bio-synthesis pathway from an ancient bacterium by horizontal gene transfer (HGT). Afterwards, followed by duplications, chromosome disorder, mutation or recombination during evolution, brown algal algG genes were divided into different types.展开更多
In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation wa...In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation was applied for the preparation of hybrid gels while Ca2+ Ce3+ Ni2+Cu2+and Fe3+were employed as the crosslinkers.Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability.Analysis results show that the highest affinity the lowest Michaelis-Menten constant Km =11.0 mg/mL and the highest stability are obtained when using Cu2+as the crosslinker.The effect of the mass ratio of TiO2 to papain on the stability and leakage of papain is also investigated and the results show that 10∶1 TiO2∶papain is optimal because the proper use of TiO2 can reduce enzyme leakage and ensure enzyme stability.Preparing Cu/alginate/TiO2 hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.展开更多
To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the su...To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...展开更多
Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects...Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects of chlorite, leading to a significant decrease in the total Fe(TFe) grade of the concentrate. In this work, the effect of sodium alginate on the reverse flotation of hematite was systematically investigated. Flotation tests of artificially mixed ores were conducted, and the results showed that sodium alginate can significantly improve the removal rates of quartz and chlorite. The adsorption measurements, infrared spectroscopy, and contact angle tests demonstrated that sodium alginate adsorbs on the quartz surface by chelating with calcium ions, thereby weakening the steric hindrance of oleate ions and increasing the adsorption capacity of sodium oleate to ultimately improve the removal rate of quartz. Furthermore, owing to its lower density and fine particle size, chlorite is easily entrained into the foam layer. Sodium alginate dramatically increases the liquid-to-gas ratio of the foam layer by increasing pulp viscosity, thereby increasing the entrainment rate of chlorite and finally improving its removal rate. The core content of this thesis bears significance in improving the Fe grade in the reverse flotation of chlorite-containing hematite.展开更多
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
基金National Key Research and Development Program(2022YFA1104604,2017YFC1103303)Science Fund for National Defense Distinguished Young Scholars(2022-JCJQ-ZQ-016)+2 种基金National Nature Science Foundation of China(32000969,82002056,92268206)Military Medical Research Projects(145AKJ260015000X,2022-JCJQ-ZD-096-00)Key Support Program for Growth Factor Research(SZYZ-TR-03).
文摘Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and has been approved by the Food and Drug Administration as Generally Recognized as Safe [2]. However, the violent crosslinking reaction and unstable structure at the wound site limit its clinical applications. Hence, we report a biocompatible and injectable composite hydrogel methacrylate alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine (NPG)-initiated composite hydrogel (AEC) composed of photocrosslinkable alginate, viscosity modifiers and novel white light photoinitiator, namely Eosin Y/NPG system, for instant hemorrhage control.
基金The authors are thankful to Ministry of Human Resource Development(presently Ministry of Education),Government of India,New Delhi,for providing research facility by sanctioning Center of Excellence(F.No.5-6/2013-TS VII)in Tissue Engineering and Center of Excellence in Orthopedic Tissue Engineering and Rehabilitation funded by World Bank under TEQIP-II.
文摘Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金supported by the Public Welfare Project of Ningbo(No.2022S211)the National Key R&D Program of China(No.2020YFD0900903)。
文摘The object of this study is to investigate the effects of sodium alginate(SA)and CaCl_(2) on the physicochemical characteristics of shrimp surimi by studying gel strength,water holding capacity(WHC),as well as by texture profile analysis(TPA).In addition,the mechanism was analyzed through chemical interactions,protein secondary structure,and microstructure.The results showed that with the addition of different concentrations of SA and CaCl_(2) to the shrimp surimi,the gel quality firstly increased and then decreased with the increase of SA and CaCl_(2) concentrations.The highest values of WHC,breaking force and gel strength were obtained with the addition of 1.2%SA or 0.1%CaCl_(2).When SA and CaCl_(2) were used in concert,the group containing 1.2%SA and 0.15%CaCl_(2) had the highest gel strength with the densest three-dimensional network structure of the gel.In addition,the results of chemical interaction analyses showed that hydrogen and ionic bonds were the main chemical bonds of shrimp surimi sol,while shrimp surimi gel mainly consisted of hydrophobic and disulfide bonds.The incorporation of SA and CaCl_(2) resulted in a significant increase in hydrophobic interactions and disulfide bonding,which could effectively improve the gel properties of shrimp surimi.
文摘The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.
基金Funded by the National Natural Science Foundation of China(No.52003211)。
文摘We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by mixing probiotics with sodium alginate-chitosan sol.The preparation contained complex calcium ions,which were released in the acidic environment of gastric juice,thus crosslinking to form in-situ gel.Different proportions of sodium alginate-chitosan were prepared to add to simulate gastrointestinal fluid to get the best ratio.The optimal ratio of LSC preparation was compared with traditional gel microspheres to observe the survival effect of probiotics in gastrointestinal fluid environment.Compared with sodium alginate sol,the porosity of sodium alginate-chitosan sol is lower,which is beneficial to the protection of probiotics.When the ratio of chitosan to sodium alginate is 1.5:1.5 (w/v),the protective effect is the best.The protective ability of LSC is 64 times that of traditional microspheres,and it has the potential of synergistic anti-tumor.A probiotic preparation with simple preparation process and better protection effect compared with traditional microspheres was prepared,which has joint anti-tumor potential.
文摘Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework(MOF),alginate/MOF composite gel has captured the interest of many researchers as a tunable platform with high stability,controllable pore structure,and enhanced biological activity.Interestingly,different fromthe traditional organic or inorganic nanofillers physically trapped or chemically linked within neTtworks,MOFs crystals can not only be dispersed by crosslinking polymerization,but also support self-assembly in-situ under the help of chelating cations with alginate.The latter is influenced by multiple factors and may involve some complex mechanisms of action,which is also a topic discussed deeply in this article while summarizing different preparation routes.Furthermore,various physical and chemical levels of improvement strategies and availablemacroforms are summarized oriented towards obtaining composite gel with ideal performance.Finally,the application status of this composite system in drug delivery,wound healing and other biomedical fields is further discussed.And the current limitations and future development directions are shed light simultaneously,which may provide guidance for the vigorous development of these composite systems.
基金supported by State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University(ZDKT202006)。
文摘Biomass-based supramolecular hydrogels are widely used in the biomedical field due to their favorable biocompatibility and outstanding mechanical properties.However,the preparation of injectable polysaccharide-based hydrogels has proven to be a significant challenge.Here we have employed a simple poor-solvent strategy to prepare alginate supramolecular hydrogels via a hierarchical self-assembly process,including micellization,micelles alignment to form nanofilament,and nanofibrils formation.The alginate supramolecular fibrillar hydrogels exhibit excellent mechanical properties and shear recoverability,meeting the requirements of injectable hydrogels.Furthermore,the presence of alginate and its fibrillar structures imparts superb hemostasis properties and the inherent biocompatibility to these hydrogels.Therefore,this simple and intriguing approach has the potential to develop polysaccharide-based hydrogels for hemostasis in wound within the biomedical fields.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
文摘A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calcium ions(Ca^(2+)).The shell,composed of a chitosan/activated carbon mixture,was then coated onto the core.Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate.Scanning electron microscopy images showed the core-shell structure.The core exhibited a high water uptake ratio,facilitating the diffusion of methylene blue into the core.During the diffusion process,the methylene blue was first adsorbed by the shell and then further adsorbed by the core.Adsorption tests showed that the coreshell structure had a larger adsorption capacity than the core alone.The shell effectively enhanced the adsorption capacity to methylene blue compared to the single core.Methylene blue was adsorbed by activated carbon and chitosan in the shell,and the residual methylene blue diffused into the core and was further adsorbed.
基金This research was funded and supported by the National Natural Science Foundation of China(Grant Number 32001443)Zhengzhou Major Science and Technology Innovation Project of Henan Province of China(Grant Number 2020CXZX0085)Science and Technology Inovation Team of Henan Academy of Agricultural Sciences(Grant Number 2024TD2).
文摘Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.
基金funded by Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)Department of Education of Liaoning Province(LJKZ0918)National College Students’Innovation and Entrepreneurship Training Program(202210163013).
文摘The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively.
基金supported by the China Postdoctoral Science Foundation(Grant No.2021MD703801)Youth Talent Cultivation Fund Project of Dalian Medical University(Grant No.508021)Open Foundation of the State Key Laboratory of Marine Food Processing&Safety Control(Grant No.SKL2023M03).
文摘Inflammatory bowel disease(IBD)represents a chronic inflammatory condition profoundly impacting the gastrointestinal tract.Its prevalence has markedly risen in both developed and developing nations over recent decades.Despite the absence of definitive etiological elucidation,therapeutic strategies predominantly revolve around pharmacological interventions aimed at symptom mitigation.Alginate(AG)is a polysaccharide of marine origin that has garnered significant attention due to its inherent biocompatibility,pH sensitivity,and cross-linking.Its exploration within drug delivery systems for IBD treatment stems from its natural sourcing,non-cytotoxic nature,and economic viability.Notably,AG demonstrates facile interpolymeric cross-linking,facilitating the formation of a cohesive network conducive to sustained drug release kinetics.AG-based carrier systems for sustained drug release,and targeted drug delivery have been widely studied.This article reviews the pathogenesis of IBD and the current drugs,AG-based drug delivery systems and their properties in alleviating IBD.The prospect of further development of AG in the field of biopharmaceutical and drug delivery is prospected.
基金The authors acknowledge the financial support received from Ministry of Education Malaysia(FRGS/1/2018/TK05/UIAM/03/3).Writing on fibre preparation,chitin,and chitosan are directly related to the said grant.
文摘Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp.and Pseudomonas sp.Owing to alginate gel forming capability,it is widely used in food,textile and paper industries;and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration.This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays.However,alginate also has limitation.When in contact with physiological environment,alginate could gelate into softer structure,consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts.To cater this problem,wide range of materials have been added to alginate structure,producing sturdy composite materials.For instance,the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material,which not only possesses better mechanical properties compared to native alginate,but also grants additional healing capability and promote better tissue regeneration.In addition,drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent.In this review,preparation of alginate and alginate composite in various forms(fibre,bead,hydrogel,and 3D-printed matrices)used for biomedical application is described first,followed by the discussion of latest trend related to alginate composite utilization in wound dressing,drug delivery,and tissue engineering applications.
基金funded by the National Key Research and Development Program of China(2021YFD1800400)the Beijing Natural Science Foundation(6222032)the Starting Grants Program for Young Talents at China Agricultural University,the 2115 Talent Development Program of China Agricultural University and Chinese Universities Scientific Fund.
文摘Background Alginate oligosaccharide(AOS)holds great potential as a novel feed supplement in farm animals.However,the effects of AOS on chicken health and the underlying mechanisms are not fully understood.This study aimed to optimize the enzymatic preparation of AOS by using bacterial alginate lyases expressed in yeast,investigate the effects of the prepared AOS on the growth performance and gut health of broiler chickens,and reveal the underlying mechanisms.Results Five alginate lyases from bacteria were cloned into Pichia pastoris GS115 and the alginate lyase PDE9 was expressed at relatively high yield,activity and stability in P.pastoris.Animal trials were carried out using 3201-day-old male Arbor Acres broilers(four groups;8 replicates/group×10 chicks/replicate)receiving either a basal diet or the same diet supplemented with 100,200 and 400 mg/kg PDE9-prepared AOS for 42 d.The results showed that dietary supplementation of 200 mg/kg AOS displayed the highest activity in promoting the birds’ADG and ADFI(P<0.05).AOS ameliorated the intestinal morphology,absorption function and barrier function,as indicated by the enhanced(P<0.05)intestinal villus height,maltase activity,and the expression of PEPT,SGLT1,ZNT1,and occludin.AOS also increased serum insulin-like growth factor-1,ghrelin(P<0.05),and growth hormone(P<0.1).Moreover,the concentrations of acetate,isobutyrate,isovalerate,valerate,and total SCFAs in cecum of birds fed AOS were significantly higher than the control birds(P<0.05).Metagenomic analysis indicated that AOS modulated the chicken gut microbiota structure,function,and microbial interactions and promoted the growth of SCFAs-producing bacteria,for example,Dorea sp.002160985;SCFAs,especially acetate,were found positively correlated with the chicken growth performance and growth-related hormone signals(P<0.05).We further verified that AOS can be utilized by Dorea sp.to grow and to produce acetate in vitro.Conclusions We demonstrated that the enzymatically produced AOS effectively promoted broiler chicken growth performance by modulating the chicken gut microbiota structure and function.For the first time,we established the connections among AOS,chicken gut microbiota/SCFAs,growth hormone signals and chicken growth performance.
基金The National High Technology Research and Development Program of China under contract No.2012AA10A406the National Nat-ural Science Foundation of China under contract Nos 41206116,31140070 and 31271397+3 种基金Technology Project of Ocean and Fisheries of Guangdong Province under contract No.A201201E03the Fundamental Research Funds for the Central Universities under contract No.201262003China Post-doctoral Science Foundation under contract No.2011M501167the algal transcriptome sequencing was supported by 1KP Project(www.onekp.com)
文摘The coding product of alginate-c5-mannuronan-epimerase gene (algG gene) can catalyze the conversion of mannuronate to guluronate and determine the M/G ratio of alginate. Most of the current knowledge about genes involved in the alginate biosynthesis comes from bacterial systems. In this article, based on some algal and bacterial algG genes registered on GenBank and EMBL databases, we predicted 94 algG genes open reading frame (ORF) sequences of brown algae from the 1 000 Plant Transcriptome Sequencing Project (OneKP). By method of transcriptomic sequence analysis, gene structure and gene localization analysis, multiple sequence alignment and phylogenetic tree construction, we studied the algal algG gene family characteristics, the structure modeling and conserved motifs of AlgG protein, the origin of alginate biosyn-thesis and the variation incidents that might have happened during evolution in algae. Although there are different members in the algal algG gene family, almost all of them harbor the conserved epimerase region. Based on the phylogenetic analysis of algG genes, we proposed that brown algae acquired the alginate bio-synthesis pathway from an ancient bacterium by horizontal gene transfer (HGT). Afterwards, followed by duplications, chromosome disorder, mutation or recombination during evolution, brown algal algG genes were divided into different types.
基金The National Natural Science Foundation of China(No.21005016)the Foundation of Educational Commission of Jiangsu Province(No.JHB2011-2)
文摘In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation was applied for the preparation of hybrid gels while Ca2+ Ce3+ Ni2+Cu2+and Fe3+were employed as the crosslinkers.Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability.Analysis results show that the highest affinity the lowest Michaelis-Menten constant Km =11.0 mg/mL and the highest stability are obtained when using Cu2+as the crosslinker.The effect of the mass ratio of TiO2 to papain on the stability and leakage of papain is also investigated and the results show that 10∶1 TiO2∶papain is optimal because the proper use of TiO2 can reduce enzyme leakage and ensure enzyme stability.Preparing Cu/alginate/TiO2 hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2007AA02Z218)the Open Project Program of Key Lab-oratory of Eco-Textiles,Jiangnan University,Ministry of Education,China(No.KLET0625) the Youth Fundof Jiangnan University(No.2006LQN002).
文摘To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...
基金financially supported by the National Natural Science Foundation of China(Nos.51504053 and 51374079)the Fundamental Research Funds for the Central Universities(No.N170107013)
文摘Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects of chlorite, leading to a significant decrease in the total Fe(TFe) grade of the concentrate. In this work, the effect of sodium alginate on the reverse flotation of hematite was systematically investigated. Flotation tests of artificially mixed ores were conducted, and the results showed that sodium alginate can significantly improve the removal rates of quartz and chlorite. The adsorption measurements, infrared spectroscopy, and contact angle tests demonstrated that sodium alginate adsorbs on the quartz surface by chelating with calcium ions, thereby weakening the steric hindrance of oleate ions and increasing the adsorption capacity of sodium oleate to ultimately improve the removal rate of quartz. Furthermore, owing to its lower density and fine particle size, chlorite is easily entrained into the foam layer. Sodium alginate dramatically increases the liquid-to-gas ratio of the foam layer by increasing pulp viscosity, thereby increasing the entrainment rate of chlorite and finally improving its removal rate. The core content of this thesis bears significance in improving the Fe grade in the reverse flotation of chlorite-containing hematite.