This paper takes further insight into the sparse geometry which offers a larger array aperture than uniform linear array(ULA)with the same number of physical sensors.An efficient method based on closed-form robust Chi...This paper takes further insight into the sparse geometry which offers a larger array aperture than uniform linear array(ULA)with the same number of physical sensors.An efficient method based on closed-form robust Chinese remainder theorem(CFRCRT)is presented to estimate the direction of arrival(DOA)from their wrapped phase with permissible errors.The proposed algorithm has significantly less computational complexity than the searching method while maintaining similar estimation precision.Furthermore,we combine all phase discrete Fourier transfer(APDFT)and the CFRCRT algorithm to achieve a considerably high DOA estimation precision.Both the theoretical analysis and simulation results demonstrate that the proposed algorithm has a higher estimation precision as well as lower computation complexity.展开更多
Orthogonal frequency division multiplexing (OFDM) is a strong candidate for the next generation wireless communica-tion. But the frequency offset between the local oscillators at the transmitter and receiver causes a ...Orthogonal frequency division multiplexing (OFDM) is a strong candidate for the next generation wireless communica-tion. But the frequency offset between the local oscillators at the transmitter and receiver causes a single frequency offset in the signal, while a time-varying channel can cause a spread of frequency offsets known as the Doppler spread. Frequency offsets ruin the orthogonal of OFDM sub-carriers and cause inter-carrier interference (ICI), therefore, quickly diminishing the performance of the system. A novel all phase OFDM (AP-OFDM) system is established. APFFT is introduced for the first time to overcome ICI aroused by carrier frequency offset (CFO) in OFDM systems. This scheme makes use of APFFT in time domain and zero inserting in frequency domain to reduce the amount of ICI gener-ated as a result of frequency offset, with little additional computational complexity. At the same time, the proposed sys-tem has zero phase error. It is proved to be correct and effective in mathematics. The simulation results indicate that AP-OFDM system has a better performance than conventional OFDM system.展开更多
Time-to-Digital Converter (TDC) is a key block used as the phase/frequency detector in an All-Digital Phase-Locked Loop (ADPLL). Usually, it occupies a large proportion of ADPLL's total power consumption up to abo...Time-to-Digital Converter (TDC) is a key block used as the phase/frequency detector in an All-Digital Phase-Locked Loop (ADPLL). Usually, it occupies a large proportion of ADPLL's total power consumption up to about 30% to 40%. In this paper, the detailed power consumption of different components in the TDC is analyzed. A Power Management Block (PMB) is presented for the TDC to reduce its power consumption. A 24-bits TDC core with the proposed PMB is implemented in HJTC 0.18 μm CMOS technology. Simulation results show that up to 84% power reduction is achieved using our proposed technique.展开更多
本文主要研究基于全相位快速傅里叶变换(All Phase Fast Fourier Transform,APFFT)的铁路信号频率检测算法。介绍铁路信号的基本概念,并对传统快速傅里叶变换与APFFT的理论基础进行深入分析。通过矩阵分析方法比较传统FFT和APFFT的性能...本文主要研究基于全相位快速傅里叶变换(All Phase Fast Fourier Transform,APFFT)的铁路信号频率检测算法。介绍铁路信号的基本概念,并对传统快速傅里叶变换与APFFT的理论基础进行深入分析。通过矩阵分析方法比较传统FFT和APFFT的性能差异。在实验分析部分,通过具体的数据模拟实验验证APFFT在频率检测方面相较于传统FFT的优势。针对铁路CPFSK(Continuous Phase Frequency Shift Keying)信号,提出基于APFFT的低频率和边缘频率检测技术。通过仿真实验验证所提方法的有效性。总结全相位FFT在铁路信号频率检测中的应用前景与研究价值。展开更多
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)
文摘This paper takes further insight into the sparse geometry which offers a larger array aperture than uniform linear array(ULA)with the same number of physical sensors.An efficient method based on closed-form robust Chinese remainder theorem(CFRCRT)is presented to estimate the direction of arrival(DOA)from their wrapped phase with permissible errors.The proposed algorithm has significantly less computational complexity than the searching method while maintaining similar estimation precision.Furthermore,we combine all phase discrete Fourier transfer(APDFT)and the CFRCRT algorithm to achieve a considerably high DOA estimation precision.Both the theoretical analysis and simulation results demonstrate that the proposed algorithm has a higher estimation precision as well as lower computation complexity.
文摘Orthogonal frequency division multiplexing (OFDM) is a strong candidate for the next generation wireless communica-tion. But the frequency offset between the local oscillators at the transmitter and receiver causes a single frequency offset in the signal, while a time-varying channel can cause a spread of frequency offsets known as the Doppler spread. Frequency offsets ruin the orthogonal of OFDM sub-carriers and cause inter-carrier interference (ICI), therefore, quickly diminishing the performance of the system. A novel all phase OFDM (AP-OFDM) system is established. APFFT is introduced for the first time to overcome ICI aroused by carrier frequency offset (CFO) in OFDM systems. This scheme makes use of APFFT in time domain and zero inserting in frequency domain to reduce the amount of ICI gener-ated as a result of frequency offset, with little additional computational complexity. At the same time, the proposed sys-tem has zero phase error. It is proved to be correct and effective in mathematics. The simulation results indicate that AP-OFDM system has a better performance than conventional OFDM system.
基金Supported by the Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-Discipline Foundationthe National Science and Technology Major Project(No.2010ZX03006-003-01)
文摘Time-to-Digital Converter (TDC) is a key block used as the phase/frequency detector in an All-Digital Phase-Locked Loop (ADPLL). Usually, it occupies a large proportion of ADPLL's total power consumption up to about 30% to 40%. In this paper, the detailed power consumption of different components in the TDC is analyzed. A Power Management Block (PMB) is presented for the TDC to reduce its power consumption. A 24-bits TDC core with the proposed PMB is implemented in HJTC 0.18 μm CMOS technology. Simulation results show that up to 84% power reduction is achieved using our proposed technique.
文摘本文主要研究基于全相位快速傅里叶变换(All Phase Fast Fourier Transform,APFFT)的铁路信号频率检测算法。介绍铁路信号的基本概念,并对传统快速傅里叶变换与APFFT的理论基础进行深入分析。通过矩阵分析方法比较传统FFT和APFFT的性能差异。在实验分析部分,通过具体的数据模拟实验验证APFFT在频率检测方面相较于传统FFT的优势。针对铁路CPFSK(Continuous Phase Frequency Shift Keying)信号,提出基于APFFT的低频率和边缘频率检测技术。通过仿真实验验证所提方法的有效性。总结全相位FFT在铁路信号频率检测中的应用前景与研究价值。