The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea...The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.展开更多
The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wea...The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.展开更多
The phase evolution in (88%-91%)Mg-8%Sn-l%Zn-X (X=A1, Mn and/or Ce) system was analyzed via CALPHAD method and simulations were used in precise selection of the chemical composition. The influence of the addition ...The phase evolution in (88%-91%)Mg-8%Sn-l%Zn-X (X=A1, Mn and/or Ce) system was analyzed via CALPHAD method and simulations were used in precise selection of the chemical composition. The influence of the addition of different alloying elements such as A1, Mn and Ce on the microstructure and microhardness of Mg-8%Sn-l%Zn-based alloys was investigated. Combined addition of A1 and Mn shows features distinct from separate addition of A1 or Mn. Additions of l%AI and l%Mn to base alloy result in the formation of massive A1-Mn phase in a-Mg matrix grains. Addition of Ce element can refme the second eutectic precipitates and form intermetallic compounds with Sn. Fine rod-like Sn-Ce phase presents mainly on the grain boundaries and plays a role in inhibiting grain growth. The effects of alloying elements on Vickers microhardness and indentation size effect of base alloy were examined.展开更多
Based on the hot tearing index|△T/△(fs)^(0.5)|recently proposed by Kou and the thermodynamic calculations of Pandat software,Al,Cu,and Mn elements were picked up and their influence on hot tearing susceptibility of ...Based on the hot tearing index|△T/△(fs)^(0.5)|recently proposed by Kou and the thermodynamic calculations of Pandat software,Al,Cu,and Mn elements were picked up and their influence on hot tearing susceptibility of Mg-x Zn(x=6,8,10,wt%)alloys was studied by experiments.The results indicate that Al addition can significantly reduce the hot tearing susceptibility of Mg-Zn alloys.Either 0.5Cu or 0.3Mn addition individually can reduce the HTS of the Mg-6Zn-(1,4)Al alloys,while adding together increases the susceptibility.The addition of 0.5Cu and 0.3Mn both individually and together increases the HTS of Mg-8/10Zn-1Al alloys.Based on the experimental and calculation results,the index can be modified to|△T/△(fs)^(0.5)|(d)^(2)for more accurate prediction on the hot tearing resistance of Mg-Zn based alloys.Grain refinement significantly improves the hot tearing resistance of Mg-Zn based alloys.展开更多
AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibb...AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibbs free energy of mixing of the equimolar A1CrFeNiCu alloy is smaller than that of inter-metallic compounds by calculation according to the Miedema model .展开更多
Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matri...Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo.展开更多
Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resi...Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).展开更多
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testin...The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations.展开更多
Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called...Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.展开更多
The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitio...The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitioning behavior of carbon and the relation of carbon content to the distributions of Al and Mo in the primary αp phase (α p) and β transformed structure (β). It was found that interstitial carbon is enriched in the α p phase and its content slightly reduces with the increase of the volume fraction of α p. The measurements of carbon content in the present alloy with an α p of 15vol% showed that the carbon content in the α p phase increases with the increment of carbon addition until a maximum but keeps almost constant in the β phase. The addition of carbon reduces the solubility of Al and Mo in the α p phase and leads to the increment of Mo partitioning to the β phase. When the carbon content is over 0.17wt% (0.67at%), carbide precipitation occurs in the matrix and its volume fraction is related to the volume fraction of α p which can be explained in term of the difference of carbon solubility in the α p and β phases.展开更多
The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere i...The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.展开更多
Effects of alloying elements,Si,Nb,Ti,W,Mo,V,Al and rare earth metals on the microstructure and properties of high speed steels(HSSs) have been reviewed.More attention is paid to effects of Si on the secondary hardeni...Effects of alloying elements,Si,Nb,Ti,W,Mo,V,Al and rare earth metals on the microstructure and properties of high speed steels(HSSs) have been reviewed.More attention is paid to effects of Si on the secondary hardening and V on the morphology of eutectic carbides in HSSs.A lot of work has been carried out on the behavior of alloying elements in HSSs in the past decade,and some new types of HSSs containing silicon,aluminum or rare earth metals have been successfully developed in the world.展开更多
The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segr...The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.展开更多
The influences of alloying elements W, Mo, Cr, and Nb on retained ft phase in 47AI based near 7-TiAI alloys have been studied. The results reveal that the amount of retained β phase is increased by the addition of Cr...The influences of alloying elements W, Mo, Cr, and Nb on retained ft phase in 47AI based near 7-TiAI alloys have been studied. The results reveal that the amount of retained β phase is increased by the addition of Cr, Mo, W in rising rank, although the distribution of β phase in Cr-bearing alloys is different from that of Mo- or W-bearing alloys. For Nb-doped alloys, no retained ft was found even when 5 at. pct Nb was added. The as-cast microstructural features and the distribution of the b phase in the different alloy families were compared and interpreted in terms of the different segregation behaviour of these elements in Ti.展开更多
The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18 8 type cast stainless steel have been studied in detail by orthogonal design experiments. The results show th...The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18 8 type cast stainless steel have been studied in detail by orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.展开更多
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L...By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.展开更多
The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these e...The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.展开更多
The application of magnesium(Mg)and its alloys in automotive and aerospace industry is promoted gradually because of its outstanding properties,such as light weight,high specific strength and excellent castability.How...The application of magnesium(Mg)and its alloys in automotive and aerospace industry is promoted gradually because of its outstanding properties,such as light weight,high specific strength and excellent castability.However,as a chemically active metal,Mg and its alloys generally possess low oxidation resistance in air at high temperatures because of the high affinity of Mg for O.This has caused a lot of industrial waste and a short service life.In the present work,according to the relevant mechanism of Mg alloy oxidation in air at high temperature,the effect of alloying elements on the oxidation of pure Mg and Mg alloys as well as the research progress of oxidation resistant Mg alloys are briefly reviewed.展开更多
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f...The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.展开更多
The oxidation behaviour of molten ZK60 and ME20 magnesium alloys in 1% 1,1,1,2-tetrafluoroethane/air atmospheres at 720 °C was compared with that of molten magnesium. The oxidation kinetics of these three melts w...The oxidation behaviour of molten ZK60 and ME20 magnesium alloys in 1% 1,1,1,2-tetrafluoroethane/air atmospheres at 720 °C was compared with that of molten magnesium. The oxidation kinetics of these three melts was determined by thermograyimetric measuring instrument, and the surface films of the oxidized samples were examined by scanning electron microscope (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the oxidation rate of molten ZK60 or ME20 alloys is much lower than that of molten magnesium in 1% 1,1,1,2-tetrafluoroethane/air atmospheres. The surface film formed on the molten magnesium is composed of MgF2, MgO and C, while the film formed on ZK60 melt mainly consists of MgF2, MgO, C and some ZrF4, and the film on ME20 mainly consists of MgF2, MgO, C and a small amount of CeF4. The good oxidation resistances of ZK60 and ME20 alloy melts may be caused by their major alloying elements Zr and Ce, respectively.展开更多
文摘The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.
基金Item Sponsored by Early-Term Key Technology of Industrialization and Whole Set Equipment From Plan Committee of China(1999317) ,863 Project of China (2002AA331180) ,and Project of Key Lab of Universities in Jiangsu Province of China(Kjsmcx04004)
文摘The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.
文摘The phase evolution in (88%-91%)Mg-8%Sn-l%Zn-X (X=A1, Mn and/or Ce) system was analyzed via CALPHAD method and simulations were used in precise selection of the chemical composition. The influence of the addition of different alloying elements such as A1, Mn and Ce on the microstructure and microhardness of Mg-8%Sn-l%Zn-based alloys was investigated. Combined addition of A1 and Mn shows features distinct from separate addition of A1 or Mn. Additions of l%AI and l%Mn to base alloy result in the formation of massive A1-Mn phase in a-Mg matrix grains. Addition of Ce element can refme the second eutectic precipitates and form intermetallic compounds with Sn. Fine rod-like Sn-Ce phase presents mainly on the grain boundaries and plays a role in inhibiting grain growth. The effects of alloying elements on Vickers microhardness and indentation size effect of base alloy were examined.
基金supported by the National Key Research and Development Program of China(2016YFB0701204)Shang-hai Rising-Star Program(15QB1402700)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements(BA2016039).
文摘Based on the hot tearing index|△T/△(fs)^(0.5)|recently proposed by Kou and the thermodynamic calculations of Pandat software,Al,Cu,and Mn elements were picked up and their influence on hot tearing susceptibility of Mg-x Zn(x=6,8,10,wt%)alloys was studied by experiments.The results indicate that Al addition can significantly reduce the hot tearing susceptibility of Mg-Zn alloys.Either 0.5Cu or 0.3Mn addition individually can reduce the HTS of the Mg-6Zn-(1,4)Al alloys,while adding together increases the susceptibility.The addition of 0.5Cu and 0.3Mn both individually and together increases the HTS of Mg-8/10Zn-1Al alloys.Based on the experimental and calculation results,the index can be modified to|△T/△(fs)^(0.5)|(d)^(2)for more accurate prediction on the hot tearing resistance of Mg-Zn based alloys.Grain refinement significantly improves the hot tearing resistance of Mg-Zn based alloys.
基金financial support for this research by Natural Science Foundation of Guangxi Province (0575-18)Guangxi Technology Research Project (0639003)Guangxi University Scientific Research Foundation (x071066)
文摘AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibbs free energy of mixing of the equimolar A1CrFeNiCu alloy is smaller than that of inter-metallic compounds by calculation according to the Miedema model .
文摘Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo.
文摘Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).
基金financially supported by the National Natural Science Foundation of China(No.51301017)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-13-034A)
文摘The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations.
文摘Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.
文摘The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitioning behavior of carbon and the relation of carbon content to the distributions of Al and Mo in the primary αp phase (α p) and β transformed structure (β). It was found that interstitial carbon is enriched in the α p phase and its content slightly reduces with the increase of the volume fraction of α p. The measurements of carbon content in the present alloy with an α p of 15vol% showed that the carbon content in the α p phase increases with the increment of carbon addition until a maximum but keeps almost constant in the β phase. The addition of carbon reduces the solubility of Al and Mo in the α p phase and leads to the increment of Mo partitioning to the β phase. When the carbon content is over 0.17wt% (0.67at%), carbide precipitation occurs in the matrix and its volume fraction is related to the volume fraction of α p which can be explained in term of the difference of carbon solubility in the α p and β phases.
文摘The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.
文摘Effects of alloying elements,Si,Nb,Ti,W,Mo,V,Al and rare earth metals on the microstructure and properties of high speed steels(HSSs) have been reviewed.More attention is paid to effects of Si on the secondary hardening and V on the morphology of eutectic carbides in HSSs.A lot of work has been carried out on the behavior of alloying elements in HSSs in the past decade,and some new types of HSSs containing silicon,aluminum or rare earth metals have been successfully developed in the world.
文摘The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.
文摘The influences of alloying elements W, Mo, Cr, and Nb on retained ft phase in 47AI based near 7-TiAI alloys have been studied. The results reveal that the amount of retained β phase is increased by the addition of Cr, Mo, W in rising rank, although the distribution of β phase in Cr-bearing alloys is different from that of Mo- or W-bearing alloys. For Nb-doped alloys, no retained ft was found even when 5 at. pct Nb was added. The as-cast microstructural features and the distribution of the b phase in the different alloy families were compared and interpreted in terms of the different segregation behaviour of these elements in Ti.
文摘The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18 8 type cast stainless steel have been studied in detail by orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.
文摘By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.
文摘The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.
文摘The application of magnesium(Mg)and its alloys in automotive and aerospace industry is promoted gradually because of its outstanding properties,such as light weight,high specific strength and excellent castability.However,as a chemically active metal,Mg and its alloys generally possess low oxidation resistance in air at high temperatures because of the high affinity of Mg for O.This has caused a lot of industrial waste and a short service life.In the present work,according to the relevant mechanism of Mg alloy oxidation in air at high temperature,the effect of alloying elements on the oxidation of pure Mg and Mg alloys as well as the research progress of oxidation resistant Mg alloys are briefly reviewed.
基金Project(50871065) supported by the National Natural Science Foundation of ChinaProjects(08DJ1400402,09JC1407200,10DZ2290904) supported by the Science and Technology Committee of Shanghai Municipality,China
文摘The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.
基金Project (SJ08-ZT05) supported by the Natural Science Basic Research Plan in Shaanxi Province of ChinaProject (ZK1050) supported by the Key Scientific Research Plan of Baoji University of Arts and Science, China
文摘The oxidation behaviour of molten ZK60 and ME20 magnesium alloys in 1% 1,1,1,2-tetrafluoroethane/air atmospheres at 720 °C was compared with that of molten magnesium. The oxidation kinetics of these three melts was determined by thermograyimetric measuring instrument, and the surface films of the oxidized samples were examined by scanning electron microscope (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the oxidation rate of molten ZK60 or ME20 alloys is much lower than that of molten magnesium in 1% 1,1,1,2-tetrafluoroethane/air atmospheres. The surface film formed on the molten magnesium is composed of MgF2, MgO and C, while the film formed on ZK60 melt mainly consists of MgF2, MgO, C and some ZrF4, and the film on ME20 mainly consists of MgF2, MgO, C and a small amount of CeF4. The good oxidation resistances of ZK60 and ME20 alloy melts may be caused by their major alloying elements Zr and Ce, respectively.