By the method of gradient pattern analysis, twenty plots were set at altitudes of 700-2600 m with an interval of 100 m on the northern slope of the Changbai Mountain. The dissimilarity of respective sub-plots in the s...By the method of gradient pattern analysis, twenty plots were set at altitudes of 700-2600 m with an interval of 100 m on the northern slope of the Changbai Mountain. The dissimilarity of respective sub-plots in the same community was measured and the complexity of plant communities at different altitudes was analyzed. The result from binary data of tree species in canopy tree indicated that the sub-plots in the communities, except subalpine Betula ermanii forest, showed comparatively high dissimilarity in species composition. Especially, the dissimilarity index (0.7) of broadleaved/Korean pine forest at low altitudes was obviously higher than other communities. The differences are not obvious between communities referring to dark coniferous forest. Comparatively, the dissimilarity in sub-plots of the communities at altitude of 1400 m was slightly higher than that of other communities, which reflected the complexity of tree species compositions of transitory-type communities. For subalpine Betula ermanii forest, tree species composition was simple and showed a high similarity between sub-plots. The results derived from binary data of shrub showed that the dissimilarity index of shrub species in broadleaved/Korean pine forest at low altitudes was higher than that in other communities, but the divergence tendency wasn抰 so obvious as that of arbor species. The dissimilarity derived from binary data of herb and all plant species at different altitudes showed greatly close tendency, and the differences in herb and all plant species between sub-plots were the greatest for the communities of broad-leaved-Korean pine forest and alpine tundra zone..展开更多
Twenty plots were investigated on northern slope of Changbai Mountain at an attitude interval of 100 m (from 700 to 2600 m). The species co-possession between plant communities at different altitudes was analyzed by J...Twenty plots were investigated on northern slope of Changbai Mountain at an attitude interval of 100 m (from 700 to 2600 m). The species co-possession between plant communities at different altitudes was analyzed by Jaccard index. The analytical results showed that the co-possession calculated according to species in different layers or all species between adjacent communities was higher than that between disjunct communities. The co-possessions between adjacent communities calculated by species in different layers had comparability and dissimilarity. If the two adjacent communities belong to different types of vegetation, then their co-possession was lower. The peak values and valley values of species co-possession between communities along elevation gradient just matched vegetation gradient patterns, and species subrogation of shrubs had more obvious rule on northern slope of Changbai Mountain. Co-possessions between communities with same altitude difference were much similar, and it decreased as the increase of elevation difference, which showed that species compositions in different layers of the communities were highly related.展开更多
[Objective] The aim of this study is to investigate species diversity of alpine vegetation in different altitudes of Daban mountain. [Method] Plant communities were surveyed in three different altitudes (3 025 m,3 40...[Objective] The aim of this study is to investigate species diversity of alpine vegetation in different altitudes of Daban mountain. [Method] Plant communities were surveyed in three different altitudes (3 025 m,3 405 m,3 813 m) of Daban mountain,the eastern Qilian,and the richness or diversity index of vegetation in three different altitudes was comparatively analyzed. [Result] The species richness decreased with the gradual increase of altitude,and species diversity of plant communities was relatively lower in medium altitude. Furthermore,community similarity also decreased with the increase of altitude,and β diversity of communities had a significant change. [Conclusion] Environmental factor change caused by different altitudes and human disturbance are important reasons for the change of species distribution pattern in different altitudes.展开更多
This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts(BSC)on bare substrates in different mountain vegetation types at the Northern Urals.In total,we identified 99 algal speci...This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts(BSC)on bare substrates in different mountain vegetation types at the Northern Urals.In total,we identified 99 algal species from six divisions in all sampled sites.The species diversity and structure of BSC algal communities show a relationship with environmental factors(altitude,soil p H and humidity,and illumination).Taxonomic diversity of algae decreases along the altitude gradient from mountain meadow to mountain tundra.Algae and cyanobacteria species from six divisions were identified in meadow communities,five in mountain forests and four in mountain tundra.We observed a positive correlation between species diversity of phototrophic microorganisms and altitude in the forest communities,but a negative correlation in the tundra.The dominant complex of cyanobacterial and algal species in BSC was specific for each type of plant community and was reflective of the habitat conditions.The species diversity and morphological organization of the BSC algae thalli can be used as a criterion for the ongoing assessment of climatic changes in high latitudes and mountain regions.展开更多
[Objective] To reveal the leaf functional traits and adaptive strategy of Torreya fargesii at different altitude gradients.[Method] Leaves of T. fargesii were selected from the altitudes of 1 570, 1 700, 1 900, 2 125 ...[Objective] To reveal the leaf functional traits and adaptive strategy of Torreya fargesii at different altitude gradients.[Method] Leaves of T. fargesii were selected from the altitudes of 1 570, 1 700, 1 900, 2 125 and 2 360 m in Jiajinshan forest area of Sichuan Baoxing County, and the altitudes of 1 000, 1 200, 1 450, and 1 700 m in Hua'eshan Mountain Nature Reserve of Sichuan Wanyuan County as the research materials. Leaf blade traits such as leaf length, leaf width, leaf girth, leaf area and leaf dry weight were determined, and the influence of altitude on each index and correlation between characters were analyzed. [Result] For the leaves from both Baoxing County and Wanyuan County, leaf length, leaf width, leaf girth, leaf aspect ratio and leaf area decreased with the increase of altitude. There was no significant difference in the changes of leaf width, leaf girth and leaf aspect ratio among different altitudes(P>0.05), while the difference was significant in leaf length between high altitude and low attitude(P<0.05), and the difference was also significant in leaf area for the leaves from Baoxing County between high altitude and low altitude. However, there was no obvious correlation between leaf width and altitude, which could be considered as a relatively stable parameter. Leaf thickness and leaf dry weight increased first and then decreased with altitude,while the specific leaf area decreased first and then increased. In leaf length, leaf girth, leaf width and leaf area parameters, except for leaf width and leaf area for the T. fargesii from Wanyuan County, any two parameters reached significant or very significant positive correlation level(P<0.01). Leaf dry weight and leaf thickness had significant or very significant positive correlation, leaf dry weight and leaf area had a certain positive correlation but not significant. There existed no significant positive correlation between specific leaf area and leaf area, while specific leaf area was in negative correlation with leaf dry weight, and the negative correlation of specific leaf area with leaf area of T. fargesii from Wanyuan County reached the significant level.[Conclusion] T. fargesii adapted to different altitudes by changing leaf dry weight, leaf area and leaf area ratio, and the most suitable altitudes for the growth of T. fargesii were 1 900 and 1 450 m in Baoxing and Wanyuan area respectively.展开更多
The distribution and availability of phosphorus(P)fractions in restored cut slope soil aggregates,along altitude gradients,were analyzed.Samples were collected at 3009,3347,3654 and 3980 m of altitude.We examined soil...The distribution and availability of phosphorus(P)fractions in restored cut slope soil aggregates,along altitude gradients,were analyzed.Samples were collected at 3009,3347,3654 and 3980 m of altitude.We examined soil aggregates total phosphorus(TP),available phosphorus(AP)and phosphorus activation coefficient(PAC),and discovered that there was no significant difference in TP levels between all four altitudes samples(p>0.05).However,there was a significant difference in AP at 3009,3347 and 3980 m of altitude(p<0.05).At the altitudes of 3009,3347 and 3654 m,the AP accumulation in small size aggregates was more advantageous.Overall,PAC dropped steadily as soil aggregates sizes increased,as shown:PAC(3654 m)>PAC(3347 m)>PAC(3009 m)>PAC(3980 m).In all particle size soil aggregates,the distribution of the P fractions was as follows:total inorganic phosphorus(TPi)>total organic phosphorus(TPo)>residual phosphorus(R-P),at 3009,3347 and 3654 m,but a different registry was observed at 3980 m of altitude:TPo>TPi>R-P.Through correlation and multiple stepwise regression analysis,it was concluded that active NaHCO_(3)-Pi was the main AP source.It was also suggested that more attention should be given to the ratio of small particle size aggregates to increase soil AP storage.In order to improve the activation capacity and supply of soil P,along with promotion of the healthy development of soil ecosystem on slope land,it was suggest that inorganic P fertilizer and P activator could be added to soil at both low(3009 m)and high altitudes(3980 m).展开更多
Introduction:Soil is the major reservoir of organic carbon.There is a paucity of soil organic carbon(SOC)stock data of afroalpine and sub-afroalpine vegetation in Ethiopia.Hence,this study was conducted to estimate th...Introduction:Soil is the major reservoir of organic carbon.There is a paucity of soil organic carbon(SOC)stock data of afroalpine and sub-afroalpine vegetation in Ethiopia.Hence,this study was conducted to estimate the SOC stock and correlate it with soil physicochemical properties in Abune Yosef afroalpine and sub-afroalpine vegetation.Systematic sampling was employed to collect soil samples from upper 30 cm.Dry bulk density soil pH(1:2.5 water);organic carbon(Walkley and Black),and total nitrogen(Kjeldahl)were the methods used for soil analysis.Pearson correlation and linear regression analysis were performed in SPSS 24 statistical software.Results:The SOC stock of the study area was found to be 79.57 t C ha−1.Soil organic carbon stock showed statistically significant positive correlation with vegetation type(r=0.522,p<0.01),bulk density(r=0.62,p<0.01),total nitrogen(r=0.41,p<0.01),and altitude(r=0.468,p<0.01)and negative correlation with slope(r=−0.298,p<0.05).The present study revealed similar soil organic carbon stock(SOCS)with the Intergovernmental Panel on Climate Change(IPCC)default estimate for similar regions.Positive correlation of SOCS and altitude could be resulted from the variations in anthropogenic disturbances,temperature,and precipitation vegetation types.The negative correlation between SOCS and slope is the result from the predictably higher soil erosion at steeper slopes.Temporal livestock trampling increased the bulk density but never affected the SOCS to decline.Aspect did not show any significant relationship with SOCS due to either the under surveying of all aspects or similar solar radiation found in the study area.Moreover,gazing,aspect,and soil pH did not show statistically significant impact on SOCS.Conclusion:The SOCS of Abune Yosef afroalpine and sub-afroalpine vegetation is similar to the IPCC default estimate for similar regions.This is a great contribution both to the global and local terrestrial carbon sink.展开更多
基金supported by the Chinese Academy of Science(grand KZCX2-406)founded by Chinese Science of Academy undred People’Project.
文摘By the method of gradient pattern analysis, twenty plots were set at altitudes of 700-2600 m with an interval of 100 m on the northern slope of the Changbai Mountain. The dissimilarity of respective sub-plots in the same community was measured and the complexity of plant communities at different altitudes was analyzed. The result from binary data of tree species in canopy tree indicated that the sub-plots in the communities, except subalpine Betula ermanii forest, showed comparatively high dissimilarity in species composition. Especially, the dissimilarity index (0.7) of broadleaved/Korean pine forest at low altitudes was obviously higher than other communities. The differences are not obvious between communities referring to dark coniferous forest. Comparatively, the dissimilarity in sub-plots of the communities at altitude of 1400 m was slightly higher than that of other communities, which reflected the complexity of tree species compositions of transitory-type communities. For subalpine Betula ermanii forest, tree species composition was simple and showed a high similarity between sub-plots. The results derived from binary data of shrub showed that the dissimilarity index of shrub species in broadleaved/Korean pine forest at low altitudes was higher than that in other communities, but the divergence tendency wasn抰 so obvious as that of arbor species. The dissimilarity derived from binary data of herb and all plant species at different altitudes showed greatly close tendency, and the differences in herb and all plant species between sub-plots were the greatest for the communities of broad-leaved-Korean pine forest and alpine tundra zone..
基金the Chinese Academy of Science (a grant KZCX2-406), National Natural Science Foundation of China (NSFC39970123), and Changbai Mo
文摘Twenty plots were investigated on northern slope of Changbai Mountain at an attitude interval of 100 m (from 700 to 2600 m). The species co-possession between plant communities at different altitudes was analyzed by Jaccard index. The analytical results showed that the co-possession calculated according to species in different layers or all species between adjacent communities was higher than that between disjunct communities. The co-possessions between adjacent communities calculated by species in different layers had comparability and dissimilarity. If the two adjacent communities belong to different types of vegetation, then their co-possession was lower. The peak values and valley values of species co-possession between communities along elevation gradient just matched vegetation gradient patterns, and species subrogation of shrubs had more obvious rule on northern slope of Changbai Mountain. Co-possessions between communities with same altitude difference were much similar, and it decreased as the increase of elevation difference, which showed that species compositions in different layers of the communities were highly related.
基金Supported by National Sci-tech Support Plan (2007BAC03A08-5)National Natural Science Foundation ( N0. 30570300, 30590381-02)The Third Period of 211 Project of Innovation Personnel Training for Postgraduate Education in Minzu University of China(0212110309090209)~~
文摘[Objective] The aim of this study is to investigate species diversity of alpine vegetation in different altitudes of Daban mountain. [Method] Plant communities were surveyed in three different altitudes (3 025 m,3 405 m,3 813 m) of Daban mountain,the eastern Qilian,and the richness or diversity index of vegetation in three different altitudes was comparatively analyzed. [Result] The species richness decreased with the gradual increase of altitude,and species diversity of plant communities was relatively lower in medium altitude. Furthermore,community similarity also decreased with the increase of altitude,and β diversity of communities had a significant change. [Conclusion] Environmental factor change caused by different altitudes and human disturbance are important reasons for the change of species distribution pattern in different altitudes.
基金supported by the Ministry of Education and Science of the Russian Federation project No.1021051101424-8-1.6.111.6.191.6.20。
文摘This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts(BSC)on bare substrates in different mountain vegetation types at the Northern Urals.In total,we identified 99 algal species from six divisions in all sampled sites.The species diversity and structure of BSC algal communities show a relationship with environmental factors(altitude,soil p H and humidity,and illumination).Taxonomic diversity of algae decreases along the altitude gradient from mountain meadow to mountain tundra.Algae and cyanobacteria species from six divisions were identified in meadow communities,five in mountain forests and four in mountain tundra.We observed a positive correlation between species diversity of phototrophic microorganisms and altitude in the forest communities,but a negative correlation in the tundra.The dominant complex of cyanobacterial and algal species in BSC was specific for each type of plant community and was reflective of the habitat conditions.The species diversity and morphological organization of the BSC algae thalli can be used as a criterion for the ongoing assessment of climatic changes in high latitudes and mountain regions.
基金Supported by the National Natural Science Foundation of China(31470568,31400321)the Science and Technology Project of Fuling District,Chongqing,China(FLKJ,2017ABA)
文摘[Objective] To reveal the leaf functional traits and adaptive strategy of Torreya fargesii at different altitude gradients.[Method] Leaves of T. fargesii were selected from the altitudes of 1 570, 1 700, 1 900, 2 125 and 2 360 m in Jiajinshan forest area of Sichuan Baoxing County, and the altitudes of 1 000, 1 200, 1 450, and 1 700 m in Hua'eshan Mountain Nature Reserve of Sichuan Wanyuan County as the research materials. Leaf blade traits such as leaf length, leaf width, leaf girth, leaf area and leaf dry weight were determined, and the influence of altitude on each index and correlation between characters were analyzed. [Result] For the leaves from both Baoxing County and Wanyuan County, leaf length, leaf width, leaf girth, leaf aspect ratio and leaf area decreased with the increase of altitude. There was no significant difference in the changes of leaf width, leaf girth and leaf aspect ratio among different altitudes(P>0.05), while the difference was significant in leaf length between high altitude and low attitude(P<0.05), and the difference was also significant in leaf area for the leaves from Baoxing County between high altitude and low altitude. However, there was no obvious correlation between leaf width and altitude, which could be considered as a relatively stable parameter. Leaf thickness and leaf dry weight increased first and then decreased with altitude,while the specific leaf area decreased first and then increased. In leaf length, leaf girth, leaf width and leaf area parameters, except for leaf width and leaf area for the T. fargesii from Wanyuan County, any two parameters reached significant or very significant positive correlation level(P<0.01). Leaf dry weight and leaf thickness had significant or very significant positive correlation, leaf dry weight and leaf area had a certain positive correlation but not significant. There existed no significant positive correlation between specific leaf area and leaf area, while specific leaf area was in negative correlation with leaf dry weight, and the negative correlation of specific leaf area with leaf area of T. fargesii from Wanyuan County reached the significant level.[Conclusion] T. fargesii adapted to different altitudes by changing leaf dry weight, leaf area and leaf area ratio, and the most suitable altitudes for the growth of T. fargesii were 1 900 and 1 450 m in Baoxing and Wanyuan area respectively.
基金This work was supported by the National Natural Science Foundation of China(No.41971056)the National Key R&D Program of China(No.2017YFC0504903)。
文摘The distribution and availability of phosphorus(P)fractions in restored cut slope soil aggregates,along altitude gradients,were analyzed.Samples were collected at 3009,3347,3654 and 3980 m of altitude.We examined soil aggregates total phosphorus(TP),available phosphorus(AP)and phosphorus activation coefficient(PAC),and discovered that there was no significant difference in TP levels between all four altitudes samples(p>0.05).However,there was a significant difference in AP at 3009,3347 and 3980 m of altitude(p<0.05).At the altitudes of 3009,3347 and 3654 m,the AP accumulation in small size aggregates was more advantageous.Overall,PAC dropped steadily as soil aggregates sizes increased,as shown:PAC(3654 m)>PAC(3347 m)>PAC(3009 m)>PAC(3980 m).In all particle size soil aggregates,the distribution of the P fractions was as follows:total inorganic phosphorus(TPi)>total organic phosphorus(TPo)>residual phosphorus(R-P),at 3009,3347 and 3654 m,but a different registry was observed at 3980 m of altitude:TPo>TPi>R-P.Through correlation and multiple stepwise regression analysis,it was concluded that active NaHCO_(3)-Pi was the main AP source.It was also suggested that more attention should be given to the ratio of small particle size aggregates to increase soil AP storage.In order to improve the activation capacity and supply of soil P,along with promotion of the healthy development of soil ecosystem on slope land,it was suggest that inorganic P fertilizer and P activator could be added to soil at both low(3009 m)and high altitudes(3980 m).
文摘Introduction:Soil is the major reservoir of organic carbon.There is a paucity of soil organic carbon(SOC)stock data of afroalpine and sub-afroalpine vegetation in Ethiopia.Hence,this study was conducted to estimate the SOC stock and correlate it with soil physicochemical properties in Abune Yosef afroalpine and sub-afroalpine vegetation.Systematic sampling was employed to collect soil samples from upper 30 cm.Dry bulk density soil pH(1:2.5 water);organic carbon(Walkley and Black),and total nitrogen(Kjeldahl)were the methods used for soil analysis.Pearson correlation and linear regression analysis were performed in SPSS 24 statistical software.Results:The SOC stock of the study area was found to be 79.57 t C ha−1.Soil organic carbon stock showed statistically significant positive correlation with vegetation type(r=0.522,p<0.01),bulk density(r=0.62,p<0.01),total nitrogen(r=0.41,p<0.01),and altitude(r=0.468,p<0.01)and negative correlation with slope(r=−0.298,p<0.05).The present study revealed similar soil organic carbon stock(SOCS)with the Intergovernmental Panel on Climate Change(IPCC)default estimate for similar regions.Positive correlation of SOCS and altitude could be resulted from the variations in anthropogenic disturbances,temperature,and precipitation vegetation types.The negative correlation between SOCS and slope is the result from the predictably higher soil erosion at steeper slopes.Temporal livestock trampling increased the bulk density but never affected the SOCS to decline.Aspect did not show any significant relationship with SOCS due to either the under surveying of all aspects or similar solar radiation found in the study area.Moreover,gazing,aspect,and soil pH did not show statistically significant impact on SOCS.Conclusion:The SOCS of Abune Yosef afroalpine and sub-afroalpine vegetation is similar to the IPCC default estimate for similar regions.This is a great contribution both to the global and local terrestrial carbon sink.