Raman peaks at 1951 and 2165 cm^(-1) can be confirmed further by H_2/D_2 isotope exchange as H-adspecies on the doubly promoted iron catalyst for ammonia synthesis and are probably ascribed to two terminally adsorbed ...Raman peaks at 1951 and 2165 cm^(-1) can be confirmed further by H_2/D_2 isotope exchange as H-adspecies on the doubly promoted iron catalyst for ammonia synthesis and are probably ascribed to two terminally adsorbed H-species.展开更多
Ammonia(NH3)is mainly produced via the Haber-Bosch process.It was discovered that the performance of a wide variety of catalysts in NH3 synthesis could be considerably enhanced by the addition of rare earth elements(R...Ammonia(NH3)is mainly produced via the Haber-Bosch process.It was discovered that the performance of a wide variety of catalysts in NH3 synthesis could be considerably enhanced by the addition of rare earth elements(REEs).As a result,catalysts promoted by REEs,especially the Ru-based ones have been extensively investigated.In this review,we summarize the progress of utilizing REEs for ammonia synthesis and outline the prospects of using them in the design and development of highly efficient and stable catalysts for ammonia synthesis.展开更多
基金Supported from the State Key Laboratory for Physical Chemistry of the Solid Surface of Xiamen University.
文摘Raman peaks at 1951 and 2165 cm^(-1) can be confirmed further by H_2/D_2 isotope exchange as H-adspecies on the doubly promoted iron catalyst for ammonia synthesis and are probably ascribed to two terminally adsorbed H-species.
基金Project supported by the National Natural Science Foundation of China(22038002,21972019)。
文摘Ammonia(NH3)is mainly produced via the Haber-Bosch process.It was discovered that the performance of a wide variety of catalysts in NH3 synthesis could be considerably enhanced by the addition of rare earth elements(REEs).As a result,catalysts promoted by REEs,especially the Ru-based ones have been extensively investigated.In this review,we summarize the progress of utilizing REEs for ammonia synthesis and outline the prospects of using them in the design and development of highly efficient and stable catalysts for ammonia synthesis.