The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extra...The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.展开更多
Oxidation of series of various primary and secondary alcohols to corresponding carbonyl compounds with ammonium persulfate in aqueous media was described. No over oxidation of primary alcohols to carboxylic acids and ...Oxidation of series of various primary and secondary alcohols to corresponding carbonyl compounds with ammonium persulfate in aqueous media was described. No over oxidation of primary alcohols to carboxylic acids and secondary alcohols to esters was observed. Under such conditions benzoin was converted to benzoic acid.展开更多
Some effective parameters on the copper extraction from Kiire chalcopyrite concentrate were optimized by using response surface methodology (RSM). Experiments designed by RSM were carried out in the presence of ammo...Some effective parameters on the copper extraction from Kiire chalcopyrite concentrate were optimized by using response surface methodology (RSM). Experiments designed by RSM were carried out in the presence of ammonium persulfate (APS) and different types of impeller in an autoclave system. Ammonium persulfate concentration and leaching temperature were defined numerically and three types of impellers were defined categorically as independent variables using experimental design software. The optimum condition for copper extraction from the chalcopyrite concentrate is found to be ammonium persulfate concentration of 277.77 kg/m3, leaching temperature of 389.98 K and wheel type of impeller. The proposed model equation using RSM has shown good agreement with the experimental data, with correlation coefficients R2 and RaZaj for the model as 0.89 and 0.84, respectively.展开更多
The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with tradit...The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.展开更多
基金financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK,No.106M177)
文摘The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.
文摘Oxidation of series of various primary and secondary alcohols to corresponding carbonyl compounds with ammonium persulfate in aqueous media was described. No over oxidation of primary alcohols to carboxylic acids and secondary alcohols to esters was observed. Under such conditions benzoin was converted to benzoic acid.
基金supported by the TUBITAK(Scientific and Technological Research Council of Turkey) under the Project No:106M177
文摘Some effective parameters on the copper extraction from Kiire chalcopyrite concentrate were optimized by using response surface methodology (RSM). Experiments designed by RSM were carried out in the presence of ammonium persulfate (APS) and different types of impeller in an autoclave system. Ammonium persulfate concentration and leaching temperature were defined numerically and three types of impellers were defined categorically as independent variables using experimental design software. The optimum condition for copper extraction from the chalcopyrite concentrate is found to be ammonium persulfate concentration of 277.77 kg/m3, leaching temperature of 389.98 K and wheel type of impeller. The proposed model equation using RSM has shown good agreement with the experimental data, with correlation coefficients R2 and RaZaj for the model as 0.89 and 0.84, respectively.
基金financially supported by the National Natural Science Foundation of China (22075308, 22209197)Natural Science Foundation of Shanxi Province (20210302 1224439, 202203021211002)Shanxi Province Science Foundation for Youths (No: SQ2019001)。
文摘The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.