Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile...Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.展开更多
The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to deter...The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles.展开更多
Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electroche...Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.展开更多
ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out w...ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines.展开更多
A recombinant strain, Escherichia coli JM109-AN1, was obtained by constructing of a genomic library of the total DNA of Delftia sp. AN3 in E. coli JM109 and screening for catechol 2,3-dioxygenase activity. This recomb...A recombinant strain, Escherichia coli JM109-AN1, was obtained by constructing of a genomic library of the total DNA of Delftia sp. AN3 in E. coli JM109 and screening for catechol 2,3-dioxygenase activity. This recombinant strain could grow on aniline as sole carbon, nitrogen and energy source. Enzymatic assays revealed that the exogenous genes including aniline dioxygenase (AD) and catechol 2,3-dioxygenase (C230) genes could well express in the recombinant strain with the activities of AD and C230 up to 0.31 U/mg wet cell and 1.92 U/mg crude proteins, respectively. The AD or C23O of strain AN3 could only catalyze aniline or catechol but not any other substituted substrates. This recombinant strain contained a recombinant plasmid, pKC505-AN1, in which a 29.7-kb DNA fragment from Delftia sp. AN3 was inserted. Sequencing and open reading frame (orfs) analysis of this 29.7 kb fragment revealed that it contained at least 27 orfs, among them a gene cluster (consisting of at least 16 genes, named danQTA1A2BRDCEFG1HIJKG2) was responsible for the complete metabolism of aniline to TCA-cycle intermediates. This gene cluster could be divided into two main parts, the upper sequences consisted of 7 genes (danQTA1A2BRD) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, and the central genes (danCEFG1HIJKG2) were expected to encode meta-cleavage pathway enzymes for catechol degradation to TCA-cycle intermediates. Unlike clusters tad from Delftia tsuruhatensis AD9 and tdn from Pseudomonas putida UCC22, in this gene cluster, all the genes were in the same transcriptional direction. There was only one set of C230 gene (danC) and ferredoxin-like protein gene (danD). The presence of only one set of these two genes and specificity of AD and C230 might be the reason for strain AN3 could only degrade aniline. The products of danQTA1A2BRDC showed 99%-100% identity to those from Delftia acidovorans 7N, and 50%-85% identity to those of tad cluster from D. tsuruhatensis AD9 in amino acid residues. Besides this dan cluster, the 29.7 kb fragment also contained genes encoding the trans-membrane transporter and transposases which might be needed for transposition of the gene cluster. Pulsed-field gel electrophoresis (PFGE) and plasmid curing experiments suggested that the dan cluster might be encoded on the chromosome of strain AN3. The GenBank accession number for the dan cluster of Delftia sp. AN3 is DQ661649.展开更多
The Cu/SiO2 catalyst prepared by incipient wetness method exhibited very high activity and selectivity for the vapor-phase synthesis of N-butylaniline from aniline and 1-butanol. When Cu loading was 0.70 mmol/g-SiO2 a...The Cu/SiO2 catalyst prepared by incipient wetness method exhibited very high activity and selectivity for the vapor-phase synthesis of N-butylaniline from aniline and 1-butanol. When Cu loading was 0.70 mmol/g-SiO2 and the catalyst precursor was calcined at 500 ℃, 1-butanol conversion reached 99%, and the selectivity of N-butylaniline exceeded 97%.展开更多
Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corrosion potential of different copolymer...Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corrosion potential of different copolymer coatings, the best solution composition was 0.09 mol/L phenol and 0.01 mol/L aniline. Through infrared spectrum analysis, polyaniline structure was proved in phenol-aniline copolymer, as well as more side chains. Scanning electron microscope was used to analyze microstructure of copolymer coating, taking advantage of part solubility of phenol-aniline eopolymer in tetrahydrofuran, the bifurcate network structure was observed. The copolymer coating microstructure was summarized, compared with the performance of polyphenol coatings, the reasons of corrosion resistance enhancement with the addition of aniline in electropolymerization reaction was assumed as well.展开更多
The electrochemical synthesis of three-dimensional (3D) polyaniline (PAN) network structure on 3-aminobenzenesulfonic acid (ABSA) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation toward...The electrochemical synthesis of three-dimensional (3D) polyaniline (PAN) network structure on 3-aminobenzenesulfonic acid (ABSA) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied. ABSA was first covalently grafted on GCE surface via the direct electrochemical oxidation of ABSA on GCE, which was followed by the electrochemical polymerization of aniline on the ABSA functionalized GCE. Then PAN-ABSA composite film modified GCE (PAN-ABSA/GCE) was obtained. Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and electrochemical techniques had been employed to characterize the obtained electrodes. Due to the effective doping of ABSA in PAN, the redox electro-activity of PAN had been extended to neutral and even the basic media, thus, the PAN-ABSA composite film modified GCE could be used for electro-catalytic oxidation of AA in 0.1 M phosphate buffer solution (PBS, pH 6.8). At PAN-ABSA/GCE the oxidation over-potential of AA shifted from 0.39 V at GCE to 0.17 V with a greatly enhanced current response. The electro-catalytic oxidation peak current of AA increased linearly with the increasing AA concentration over the range of 5.00 × 10-4-1.65 × 10-2 M with a correlation coefficient of 0.9973. The detection limit (S/N = 3) for AA was 1.16 × 10-6 M. Chronoamperometry had also been employed to investigate the electro-catalytic oxidation of AA at PAN-ABSA/GCE. The modified electrode had been used for detecting AA in real samples with satisfactory results.展开更多
A promising gram-negative bacterial strain for the biodegradation of aniline as the sole carbon, nitrogen and energy sources was successfully isolated and identified as Delftia sp. XYJ6. The optimal temperature and pH...A promising gram-negative bacterial strain for the biodegradation of aniline as the sole carbon, nitrogen and energy sources was successfully isolated and identified as Delftia sp. XYJ6. The optimal temperature and pH for both the growth of Delftia sp. XYJ6 and the biodegradation of aniline were 30°C and 7.0, respectively. Initial aniline of 2000 mg·L-1 could be completely removed by the strain at 22 h, which showed that Delftia sp. XYJ6 had a strong ability in the biodegradation of aniline. It indicated that aniline was firstly converted to catechol catalyzed by aniline dioxygenase as a first product, which was then further biodegraded to cis,cis-muconic acid catalyzed by the catechol 1,2-dioxygenase of Delftia sp. XYJ6 as a second product. Cis,cis-muconic acid could also be further biodegraded to other small compound again. The pathway for the biodegradation of aniline by Delftia sp. XYJ6 was not previously reported.展开更多
The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+...The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+ concentration, pH and ionic strength level were discussed. It is demonstrated that, aniline degradation rate increases with increasing persulfate concentration, but much more ferrous ion inhibits the aniline degradation. When the aniline concentration is 0.10 mmol/L, the maximum aniline degradation occurs at the S2O82- to Fe2+ molar ratio of 250/5 at pH 7.0. In the pH range of 5.0-8.5, increasing pH causes higher aniline degradation. What's more, the increase of ionic strength in solution causes inhibiting in the reaction. Produced intermediates during the oxidation process were identified using gas chromatography-mass spectrometry (GC-MS) technology. And degradation pathways of aniline were also tentatively proposed.展开更多
The kinetics of aniline degradation by persulfate processes with iron(Ⅱ) activation at ambient temperature was investigated in this study.With iron(Ⅱ) as initiator,the oxidation reactions were found to follow a ...The kinetics of aniline degradation by persulfate processes with iron(Ⅱ) activation at ambient temperature was investigated in this study.With iron(Ⅱ) as initiator,the oxidation reactions were found to follow a biphasic rate phenomenon:a rapid transformation followed by a slow but sustained oxidation process.In the first 30 s,the reaction mainly relies on the persulfate-Fe^(2+) reaction in which aniline is oxidized rapidly.After 30 s,the aniline was still oxidized but the rate of reaction tended to be slower and the rates were clearly linear-proportional.After the initial fast oxidation,the reactions appeared to follow a pseudo-first-order model.展开更多
The paper deals with the influence of anode material on the efficiency of degradation for organic pollutants in water system.The electrochemical performance of fluorine ion doped lead dioxide(F--PbO2) electrode for ...The paper deals with the influence of anode material on the efficiency of degradation for organic pollutants in water system.The electrochemical performance of fluorine ion doped lead dioxide(F--PbO2) electrode for the degradation of aniline was compared with that of undoped lead dioxide(PbO2) electrode by ultraviolet-visible(UV-Vis) spectroscopy,linear voltammetry and other analytical methods,such as the measurement by chemical oxygen demand analyzer,high performance liquid chromatography and scanning electron micrography.It was shown that both PbO2 electrode and F--PbO2 electrode could make aniline be mineralized completely and have the same degradation course,but F--PbO2 electrode has much higher electrocatalytic activity than undoped PbO2 electrode for the electrochemical degradation of aniline.The experimental results confirm that F--PbO2 electrode has much higher potential for oxygen evolution than undoped PbO2 electrode.展开更多
The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared w...The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared with conventional O3/Fenton in a stirred tank reactor (STR-O3/Fenton) or single ozonation in an RPB (RPB-O3), Effects of high gravity factor, H2O2 dosage, H2O2 dosing method and initial pH on the AN mineralization efficiency were investigated in the RPB-O3/Fenton process, In addition, the behavior of Fe(Ⅱ) was monitored at different H2O2 dosing methods and pH values. Finally, the optimal operation conditions were determined with high gravity factor of 100, initial pH of 5, Fe(Ⅱ) concentration of 0.8 mmol·L-1 and H2O2 dosage of 2.5 ml. Under these conditions, for aniline wastewater at the volume of I L and concentration of 200 mg· L- 1 ,a fast and thorough decay of AN was conducted in 10 min, and the TOC removal efficiency reached 89% in 60 min. The main intermediates of p-benzoquinone, nitrobenzene, maleic acid and oxalic acid were identified by liquid chromatography/mass spectroscopy (LC/MS), and the degradation pathways of AN in RPB-O3/Fenton system were proposed based on experimental evidence. It could be envisioned that high-gravity technology combined with O3/Fenton processes would be promising in the rapid and efficient mineralization ofwastewater.展开更多
A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosa...A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail. The experimental results indicated that this method was simple, rapid, and sensitive. The linear range was 8.367 × 10(?4) to 2.789 × 10(?2) mol L(?1), the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4–106.9% under the optimal conditions. The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.展开更多
Hollow fiber renewal liquid membrane(HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2 EHPA in kerosene + HCl was used. Aqueous layer di...Hollow fiber renewal liquid membrane(HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2 EHPA in kerosene + HCl was used. Aqueous layer diffusion in the feed phase is the rate-control step, and the influence of lumen side flow rate on the mass transfer is more significant than that on the shell side. The resistance of overall mass transfer is greatly reduced because of the mass transfer intensification in the renewal of liquid membrane on the lumen side. The driving force of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfer coefficient increases with the increase of p H in the feed solution, HCl concentration and D2 EHPA concentration, and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLM based on the surface renewal theory. The calculated results agree well with experimental results. The HFRLM process is a promising method for aniline wastewater treatment.展开更多
For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO 2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction w...For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO 2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction was first-order both in ClO 2 and in aniline, and the oxidation reaction could be described as second-order reaction. Stoichiometric factor η was experimentally determined to be 2 44. The second-order-reaction rate constant k was 0 11 L/(mol·s) under condition of pH 6 86 and water temperature(T w) 287K. Reaction activation energy was 72 31 kJ/mol, indicating that the reaction could take place under usual water treatment conditions. The reaction rate constants in acidic and alkali media were greater than that in neutral medium. Chlorite ion could slightly increase reaction rate in acidic medium. p-aminophenol and azobenzene were detected by GC-MS as intermediates.展开更多
Methyl N-phenyl carbamate(MPC), an important organic chemical, can be synthesized from aniline,CO2 and methanol. Catalyst Cu-Fe/ZrO2-SiO2 was first prepared and its catalytic performance for MPC synthesis was evaluate...Methyl N-phenyl carbamate(MPC), an important organic chemical, can be synthesized from aniline,CO2 and methanol. Catalyst Cu-Fe/ZrO2-SiO2 was first prepared and its catalytic performance for MPC synthesis was evaluated. Then the influence of solvent on the reaction path of MPC synthesis was investigated. It is found that the reaction intermediate is different with acetonitrile or methanol as a solvent. With acetonitrile as a solvent,the synthesis of MPC follows the reaction path with diphenyl urea as the intermediate, while with methanol as a solvent the reaction occurs via the reaction path with dimethyl carbonate as the intermediate. The catalytic mechanism of cooperative catalysis comprising metal sites, Lewis acid sites and Lewis base sites is proposed according to different reaction intermediates.展开更多
Objective Nitrobenzene extraction enhanced by salting-out effect was employed to recover aniline from wastewater at 25 ℃. Method Batchwise experiments were conducted to elucidate the influence of various operating va...Objective Nitrobenzene extraction enhanced by salting-out effect was employed to recover aniline from wastewater at 25 ℃. Method Batchwise experiments were conducted to elucidate the influence of various operating variables on the extracting performance, including acidity of wastewater, initial aniline concentration, ratios of solvent to wastewater, extraction stages, concentrations and different types of inorganic salts, such as NaCl, KCI, Na2SO4, CaCl2 and K29O4. Results Nitrobenzene with a concentration of 20% and a pH value of 9.1 at the temperature of 25 ℃ together with NaCl of a concentration of 14 wt.% realized nearly 100% aniline recovery at the fifth stage of wastewater treatment. Conclusions High pH values and volume ratios of nitrobenzene/wastewater are more suitable for recovery of aniline. In addition, recovery of aniline is significantly elevated with increase of the concentration of salts, whose promoting effects are in the following order: NaCI〉Na2SO4〉K2SO4〉CaC12〉KCI on the weight basis of wastewater. Furthermore, aniline in wastewater can be almost completely recovered by five-stage sequential nitrobenzene extraction, which is promoted continuously by the salting-out effect.展开更多
The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric aci...In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.展开更多
文摘Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.
基金supported by the National Natural Science Foundation of China(21333003,21577034)National Basic Research Program of China(2013CB933200)+1 种基金National High Technology Research and Development Program of China(2015AA034603)the Fundamental Research Funds for the Central Universities(WJ1514020)~~
文摘The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles.
基金supported by the National Natural Science Foundation of China(21507104)the Fundamental Research Funds for the Central Universities of China
文摘Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.
基金Supported by Major Special Science and Technology Project of Guangdong Province(2010B080703035)~~
文摘ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines.
文摘A recombinant strain, Escherichia coli JM109-AN1, was obtained by constructing of a genomic library of the total DNA of Delftia sp. AN3 in E. coli JM109 and screening for catechol 2,3-dioxygenase activity. This recombinant strain could grow on aniline as sole carbon, nitrogen and energy source. Enzymatic assays revealed that the exogenous genes including aniline dioxygenase (AD) and catechol 2,3-dioxygenase (C230) genes could well express in the recombinant strain with the activities of AD and C230 up to 0.31 U/mg wet cell and 1.92 U/mg crude proteins, respectively. The AD or C23O of strain AN3 could only catalyze aniline or catechol but not any other substituted substrates. This recombinant strain contained a recombinant plasmid, pKC505-AN1, in which a 29.7-kb DNA fragment from Delftia sp. AN3 was inserted. Sequencing and open reading frame (orfs) analysis of this 29.7 kb fragment revealed that it contained at least 27 orfs, among them a gene cluster (consisting of at least 16 genes, named danQTA1A2BRDCEFG1HIJKG2) was responsible for the complete metabolism of aniline to TCA-cycle intermediates. This gene cluster could be divided into two main parts, the upper sequences consisted of 7 genes (danQTA1A2BRD) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, and the central genes (danCEFG1HIJKG2) were expected to encode meta-cleavage pathway enzymes for catechol degradation to TCA-cycle intermediates. Unlike clusters tad from Delftia tsuruhatensis AD9 and tdn from Pseudomonas putida UCC22, in this gene cluster, all the genes were in the same transcriptional direction. There was only one set of C230 gene (danC) and ferredoxin-like protein gene (danD). The presence of only one set of these two genes and specificity of AD and C230 might be the reason for strain AN3 could only degrade aniline. The products of danQTA1A2BRDC showed 99%-100% identity to those from Delftia acidovorans 7N, and 50%-85% identity to those of tad cluster from D. tsuruhatensis AD9 in amino acid residues. Besides this dan cluster, the 29.7 kb fragment also contained genes encoding the trans-membrane transporter and transposases which might be needed for transposition of the gene cluster. Pulsed-field gel electrophoresis (PFGE) and plasmid curing experiments suggested that the dan cluster might be encoded on the chromosome of strain AN3. The GenBank accession number for the dan cluster of Delftia sp. AN3 is DQ661649.
文摘The Cu/SiO2 catalyst prepared by incipient wetness method exhibited very high activity and selectivity for the vapor-phase synthesis of N-butylaniline from aniline and 1-butanol. When Cu loading was 0.70 mmol/g-SiO2 and the catalyst precursor was calcined at 500 ℃, 1-butanol conversion reached 99%, and the selectivity of N-butylaniline exceeded 97%.
文摘Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corrosion potential of different copolymer coatings, the best solution composition was 0.09 mol/L phenol and 0.01 mol/L aniline. Through infrared spectrum analysis, polyaniline structure was proved in phenol-aniline copolymer, as well as more side chains. Scanning electron microscope was used to analyze microstructure of copolymer coating, taking advantage of part solubility of phenol-aniline eopolymer in tetrahydrofuran, the bifurcate network structure was observed. The copolymer coating microstructure was summarized, compared with the performance of polyphenol coatings, the reasons of corrosion resistance enhancement with the addition of aniline in electropolymerization reaction was assumed as well.
文摘The electrochemical synthesis of three-dimensional (3D) polyaniline (PAN) network structure on 3-aminobenzenesulfonic acid (ABSA) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied. ABSA was first covalently grafted on GCE surface via the direct electrochemical oxidation of ABSA on GCE, which was followed by the electrochemical polymerization of aniline on the ABSA functionalized GCE. Then PAN-ABSA composite film modified GCE (PAN-ABSA/GCE) was obtained. Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and electrochemical techniques had been employed to characterize the obtained electrodes. Due to the effective doping of ABSA in PAN, the redox electro-activity of PAN had been extended to neutral and even the basic media, thus, the PAN-ABSA composite film modified GCE could be used for electro-catalytic oxidation of AA in 0.1 M phosphate buffer solution (PBS, pH 6.8). At PAN-ABSA/GCE the oxidation over-potential of AA shifted from 0.39 V at GCE to 0.17 V with a greatly enhanced current response. The electro-catalytic oxidation peak current of AA increased linearly with the increasing AA concentration over the range of 5.00 × 10-4-1.65 × 10-2 M with a correlation coefficient of 0.9973. The detection limit (S/N = 3) for AA was 1.16 × 10-6 M. Chronoamperometry had also been employed to investigate the electro-catalytic oxidation of AA at PAN-ABSA/GCE. The modified electrode had been used for detecting AA in real samples with satisfactory results.
基金Supported by the National Natural Science Foundation of China (20777008)the Education Committee of Beijing
文摘A promising gram-negative bacterial strain for the biodegradation of aniline as the sole carbon, nitrogen and energy sources was successfully isolated and identified as Delftia sp. XYJ6. The optimal temperature and pH for both the growth of Delftia sp. XYJ6 and the biodegradation of aniline were 30°C and 7.0, respectively. Initial aniline of 2000 mg·L-1 could be completely removed by the strain at 22 h, which showed that Delftia sp. XYJ6 had a strong ability in the biodegradation of aniline. It indicated that aniline was firstly converted to catechol catalyzed by aniline dioxygenase as a first product, which was then further biodegraded to cis,cis-muconic acid catalyzed by the catechol 1,2-dioxygenase of Delftia sp. XYJ6 as a second product. Cis,cis-muconic acid could also be further biodegraded to other small compound again. The pathway for the biodegradation of aniline by Delftia sp. XYJ6 was not previously reported.
基金Project partly supported by a Grant from E.I. du Pont de Nemours and Company to Rutgers UniversityProject(2010B05020007) supported by the Foundation of Science and Technology Planning of Guangdong Province, China+2 种基金Project(2011ZM0054) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011K0013) supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, ChinaProject supported by the Research Fund of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, China
文摘The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+ concentration, pH and ionic strength level were discussed. It is demonstrated that, aniline degradation rate increases with increasing persulfate concentration, but much more ferrous ion inhibits the aniline degradation. When the aniline concentration is 0.10 mmol/L, the maximum aniline degradation occurs at the S2O82- to Fe2+ molar ratio of 250/5 at pH 7.0. In the pH range of 5.0-8.5, increasing pH causes higher aniline degradation. What's more, the increase of ionic strength in solution causes inhibiting in the reaction. Produced intermediates during the oxidation process were identified using gas chromatography-mass spectrometry (GC-MS) technology. And degradation pathways of aniline were also tentatively proposed.
基金supported by a grant from E.I.du Pont de Nemours and Company to Rutgers University.Partial funding wasalso provided by the Natural Science Foundation of Guangdong Province(No.9351064101000001)Science and Technology Planning Project of Guangdong Province(No.2007A020100001-13)the Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Higher Education Institutions(China)
文摘The kinetics of aniline degradation by persulfate processes with iron(Ⅱ) activation at ambient temperature was investigated in this study.With iron(Ⅱ) as initiator,the oxidation reactions were found to follow a biphasic rate phenomenon:a rapid transformation followed by a slow but sustained oxidation process.In the first 30 s,the reaction mainly relies on the persulfate-Fe^(2+) reaction in which aniline is oxidized rapidly.After 30 s,the aniline was still oxidized but the rate of reaction tended to be slower and the rates were clearly linear-proportional.After the initial fast oxidation,the reactions appeared to follow a pseudo-first-order model.
基金Supported by the National Natural Science Foundation of China(No.20873051)the High-tech Research and Development Program of China(No.2006AA06Z321)the Natural Science Foundation of Jiangsu Province,China(No.BK2008555)
文摘The paper deals with the influence of anode material on the efficiency of degradation for organic pollutants in water system.The electrochemical performance of fluorine ion doped lead dioxide(F--PbO2) electrode for the degradation of aniline was compared with that of undoped lead dioxide(PbO2) electrode by ultraviolet-visible(UV-Vis) spectroscopy,linear voltammetry and other analytical methods,such as the measurement by chemical oxygen demand analyzer,high performance liquid chromatography and scanning electron micrography.It was shown that both PbO2 electrode and F--PbO2 electrode could make aniline be mineralized completely and have the same degradation course,but F--PbO2 electrode has much higher electrocatalytic activity than undoped PbO2 electrode for the electrochemical degradation of aniline.The experimental results confirm that F--PbO2 electrode has much higher potential for oxygen evolution than undoped PbO2 electrode.
基金Supported by the National Natural Science Foundations of China(U1610106)Shanxi Excellent Talent Science and Technology Innovation Project(201705D211011)+1 种基金Specialized Research Fund for Sanjin Scholars Program of Shanxi ProvinceNorth University of China Fund for Distinguished Young Scholars
文摘The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared with conventional O3/Fenton in a stirred tank reactor (STR-O3/Fenton) or single ozonation in an RPB (RPB-O3), Effects of high gravity factor, H2O2 dosage, H2O2 dosing method and initial pH on the AN mineralization efficiency were investigated in the RPB-O3/Fenton process, In addition, the behavior of Fe(Ⅱ) was monitored at different H2O2 dosing methods and pH values. Finally, the optimal operation conditions were determined with high gravity factor of 100, initial pH of 5, Fe(Ⅱ) concentration of 0.8 mmol·L-1 and H2O2 dosage of 2.5 ml. Under these conditions, for aniline wastewater at the volume of I L and concentration of 200 mg· L- 1 ,a fast and thorough decay of AN was conducted in 10 min, and the TOC removal efficiency reached 89% in 60 min. The main intermediates of p-benzoquinone, nitrobenzene, maleic acid and oxalic acid were identified by liquid chromatography/mass spectroscopy (LC/MS), and the degradation pathways of AN in RPB-O3/Fenton system were proposed based on experimental evidence. It could be envisioned that high-gravity technology combined with O3/Fenton processes would be promising in the rapid and efficient mineralization ofwastewater.
文摘A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail. The experimental results indicated that this method was simple, rapid, and sensitive. The linear range was 8.367 × 10(?4) to 2.789 × 10(?2) mol L(?1), the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4–106.9% under the optimal conditions. The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.
基金Supported by the Program for New Century Excellent Talents in University(NCET-100210)the National Natural Science Foundation of China(21076011 and 21276012)
文摘Hollow fiber renewal liquid membrane(HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2 EHPA in kerosene + HCl was used. Aqueous layer diffusion in the feed phase is the rate-control step, and the influence of lumen side flow rate on the mass transfer is more significant than that on the shell side. The resistance of overall mass transfer is greatly reduced because of the mass transfer intensification in the renewal of liquid membrane on the lumen side. The driving force of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfer coefficient increases with the increase of p H in the feed solution, HCl concentration and D2 EHPA concentration, and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLM based on the surface renewal theory. The calculated results agree well with experimental results. The HFRLM process is a promising method for aniline wastewater treatment.
文摘For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO 2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction was first-order both in ClO 2 and in aniline, and the oxidation reaction could be described as second-order reaction. Stoichiometric factor η was experimentally determined to be 2 44. The second-order-reaction rate constant k was 0 11 L/(mol·s) under condition of pH 6 86 and water temperature(T w) 287K. Reaction activation energy was 72 31 kJ/mol, indicating that the reaction could take place under usual water treatment conditions. The reaction rate constants in acidic and alkali media were greater than that in neutral medium. Chlorite ion could slightly increase reaction rate in acidic medium. p-aminophenol and azobenzene were detected by GC-MS as intermediates.
基金Supported by the National Natural Science Foundation of China(20976035)the Natural Science Foundation of Tianjin City(12JCYBJC12800)the Key Basic Research Project of Applied Basic Research Plan of Hebei Province(12965642D)
文摘Methyl N-phenyl carbamate(MPC), an important organic chemical, can be synthesized from aniline,CO2 and methanol. Catalyst Cu-Fe/ZrO2-SiO2 was first prepared and its catalytic performance for MPC synthesis was evaluated. Then the influence of solvent on the reaction path of MPC synthesis was investigated. It is found that the reaction intermediate is different with acetonitrile or methanol as a solvent. With acetonitrile as a solvent,the synthesis of MPC follows the reaction path with diphenyl urea as the intermediate, while with methanol as a solvent the reaction occurs via the reaction path with dimethyl carbonate as the intermediate. The catalytic mechanism of cooperative catalysis comprising metal sites, Lewis acid sites and Lewis base sites is proposed according to different reaction intermediates.
基金Supported by the Natural Science Foundation of Shandong Province(No.2006BS08014).
文摘Objective Nitrobenzene extraction enhanced by salting-out effect was employed to recover aniline from wastewater at 25 ℃. Method Batchwise experiments were conducted to elucidate the influence of various operating variables on the extracting performance, including acidity of wastewater, initial aniline concentration, ratios of solvent to wastewater, extraction stages, concentrations and different types of inorganic salts, such as NaCl, KCI, Na2SO4, CaCl2 and K29O4. Results Nitrobenzene with a concentration of 20% and a pH value of 9.1 at the temperature of 25 ℃ together with NaCl of a concentration of 14 wt.% realized nearly 100% aniline recovery at the fifth stage of wastewater treatment. Conclusions High pH values and volume ratios of nitrobenzene/wastewater are more suitable for recovery of aniline. In addition, recovery of aniline is significantly elevated with increase of the concentration of salts, whose promoting effects are in the following order: NaCI〉Na2SO4〉K2SO4〉CaC12〉KCI on the weight basis of wastewater. Furthermore, aniline in wastewater can be almost completely recovered by five-stage sequential nitrobenzene extraction, which is promoted continuously by the salting-out effect.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.
基金Project(2010B050200007)supported by the Foundation of Science and Technology Planning Project of Guangdong Province,ChinaProject(2011ZM0054)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2011K0013)supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,ChinaProject(2012)supported by the Research Funds of Guangdong Provincial Key Laboratory of Atmospheric environment and Pollution Control,China
文摘In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.