This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of...This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.展开更多
CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressu...CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressure. When the coal was impregnated with an appropriate quantity of Ca and BL mixture, the catalytic activity of CO2 gasification was enhanced obviously. With a loading of 8%Na-BL+2%Ca, the carbon conversion of three coal samples tested reaches up to 92.9%-99.3% at 950℃ within 30min. The continuous formation of alkali surface compounds such as ([-COM], [-CO2M]) and the presence of exchanged Ca, such as calcium phenolate and calcium carboxylates (COO)2Ca, contribute to the increase in catalytic efficiency, and using BL+Ca is more efficient than that adding BL only, The homogeneous model and shrinking-core model were applied to correlate the data of conversion with time and to estimate the reaction rate constants under different temperature. The corresponding reaction activation energy (Ea) and pre-exponential factor of three anthracites were estimated. It is found that Ea is in the range from 73.6 to 121.4kJ·mol^-1 in the case of BL+Ca, and 74.3 to 104.2kJ·mol^-1 when only BL was used as the catalyst, both of which are much less than that from 143.5 to 181.4kJ·mol^-1 if no catalyst used. It is clearly demonstrated that both of BL+Ca mixture and BL could be the source of cheap and effective catalyst for coal gasification.展开更多
The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree a...The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree against temperature during the graphitization process,a series of experiments were performed using Raman spectroscopy and X-ray diffraction(XRD).Subsequently,the influencing factors of the dominant reaction at different temperatures were analyzed using thermodynamics and kinetics.The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics.Temperature played a crucial role in the formation and growth of a graphitic structure.Meanwhile,multivariate mechanisms coexisted in the graphitization process.At ultrahigh temperatures,the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced.At low temperatures,the reaction is mainly controlled by dynamics,while at high temperatures,thermodynamics dominates the direction of the reaction.展开更多
Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow,...Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means of the t-plots and DFT methods. The surface area values were higher for rat coal samples than for anthracite one, and for the rat coal samples treated with KOH + NH4Cl + ZnCl2 at 650 °C [Rat650(2)] there are highest surface area and total pore volume, 315.6 m2·g^-1 and 0.156 ml·g^-1, respectively. The highest value of the hydrogen sorption capacity was found as 0.71% (by mass) for the rat coal sample obtained by KOH + ZnCl2 treatment at 650 °C [Rat650(1)].展开更多
Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstr...Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstructural evolution of anthracite in the temperature range of 1000–2800 ℃ was systematically investigated to provide a guidance for the microstructural regulation of coal-based carbon materials.The results indicate that the microstructure of anthracite undergoes an important change during carbonization-graphitization process. As the temperature increases, aromatic layers in anthracite gradually transform into disordered graphite microcrystals and further grow into ordered graphite microcrystals, and then ordered graphite microcrystals are laterally linked to form pseudo-graphite phase and eventually transformed into highly ordered graphite-like sheets. In particular, 2000–2200 ℃ is a critical temperature region for the qualitative change of ordered graphite crystallites to pseudo-graphite phase,in which the relevant structural parameters including stacking height, crystallite lateral size and graphitization degree show a rapid increase. Moreover, both aromaticity and graphitization degree have a linear positive correlation with carbonization-graphitization temperature in a specific temperature range.Besides, after initial carbonization, some defect structures in anthracite such as aliphatic carbon and oxygen-containing functional groups are released in the form of gaseous low-molecular volatiles along with an increased pore structure, and the intermediates derived from minerals could facilitate the conversion of sp^(3) amorphous carbon to sp^(2) graphitic carbon. This work provides a valuable reference for the rational design of microstructure of coal-based carbon materials.展开更多
By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitu- tive relation of anthracite at a strain rate of ε =5-85s^-1. Generally, the dynamic stress-strain curve fo...By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitu- tive relation of anthracite at a strain rate of ε =5-85s^-1. Generally, the dynamic stress-strain curve for this kind of anthracite under uni-axial compression has the following four stages: a non-linear loading stage, a plastic yielding stage, a strain-strengthening stage and an unloading breakage stage. Correspondingly, the initial elastic modulus Eb, the yielding strength σs and the ultimate strength σb increase along with an increasing strain rate. The time-dependent elasticity was identified when we analyzed the mechanical properties of anthracite. Based on characteristics of measured dynamic stress-strain curves and an analysis of existing rock dynamic constitutive models, as well as a preparatory simulation, a new visco-elastic damage model has been introduced in this paper. A linear spring is put parallel to two Maxwell units with different relaxation times to express two distinct plastic flows. The damage D is equal to [Eb- E(εi)]/Eb, where Eb is the beginning modulus and the E(εi) is the slope of a connected line between the origin point and any other point on a tested stress-strain curve. In the new constitutive model, one Maxwell unit with low relaxation time φ is used to describe the response of anthracite to a low strain rate, while the other, with a high relaxation time φ describes the response of anthracite to a high strain rate. Simulated stress-strain curves from the new model are consistent with the measured curves.展开更多
Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18...Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18 CBM wells in Zhengzhuang in Jincheng and their fissures and pores were observed by a Scanning Electron Microscope(SEM).To the naked eyes and by SEM,the pores in the Jincheng anthracite are seen to have abundant mold pores with isolated,shallow and poor connectivity(diameters between 1~50 μm) and few plant tissue pores,gas pores,and solution pores.Most of the fissures are filled with clay minerals or closed;while open fissures are not often visible in the Jincheng coal(aperture between 3~10 μm).These characteristics are determined by the high rank and high vitrinite content of the coal.The existence of too many mold pores and filled fissures does not allow the migration of methane,hence hydraulic fracture stimulation will be required and is an effective method of adding and connecting fissures to enhance CBM production.展开更多
The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in a...The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.展开更多
The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,I...The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,India.The SiO_(2)content(48.05 wt%to 65.09 wt%and 35.92 wt%to 50.11 wt%in the bituminous and anthracite samples,respectively)and the ratio of Al_(2)O_(3)/TiO_(2)(6.97 to 17.03 in the bituminous coal samples and 10.34 to 20.07 in the anthracite samples)reveal the intermediate igneous source rock composition of the minerals.The ratio of the K_(2)O/Al_(2)O_(3)in the ash yield of the bituminous coal samples(0.03 to 0.09)may suggest the presence of kaolinite mixed with montmorillonite,while its range in the ash yield of the anthracite samples(0.16 to 0.27)may imply the presence of illite mixed with kaolinite.The chemical index of alteration values may suggest the moderate to strong chemical weathering of the source rock under sub-humid to humid climatic conditions.The plot of the bituminous coal samples in the A–CN–K diagram depicts the traditional weathering trend of parent rocks,but the anthracite samples plot near the illite feld and are a bit ofset from the weathering trend.This may imply the plausible infuences of the potassium-metasomatism at post coalifcation stages,which is further supported by high K_(2)O/Na_(2)O ratio(29.88–80.13).The Fourier transform infrared spectra further reveal the hydroxyl stretching intensity of illite in the anthracite samples substantiating the efect of the epigenetic potassium-metasomatism.The decrease in total kaolinite intensity/compound intensity of quartz and feldspar may provide additional evidence towards this epigenetic event.展开更多
The fundamental question of super-low-ash coal preparation is how to furthest depress high ash component pollution. A jigging process was used to remove high ash refuse and middling, then a high precision heavy medium...The fundamental question of super-low-ash coal preparation is how to furthest depress high ash component pollution. A jigging process was used to remove high ash refuse and middling, then a high precision heavy medium cyclone was used to further separate near gravity light material. A two-stage heavy medium cylindrical cyclone with the same separation density was used to increase the precision of separation. The feed was de-slimed and fine-grind coal was added with media to improve the stability of the suspension. The pump frequency conversion timing and an air spring were used to steady the cyclone inlet pressure. Based on a series of study and pilot tests, a 1.00 Mt/a (output) commercial separation system with Ep value under 0.015 was built up. Super low ash (Ad≤2.00%) Taixi Anthracite has been put into commercial production.展开更多
The effects of blending Enugu coal and anthracite on tin smelting using Nigerian Dogo Na Hauwa cassiterite have been studied. The work utilized various blends ranging from 100% to 0% anthracite. The content of the Enu...The effects of blending Enugu coal and anthracite on tin smelting using Nigerian Dogo Na Hauwa cassiterite have been studied. The work utilized various blends ranging from 100% to 0% anthracite. The content of the Enugu coal in the blend varied from 5% to 100%. The various tin metal recovery percentage for each batch of smelting using various blends was noted. Anthracite alone had the highest recovery of 71.90% followed by 5% blend of Enugu with anthracite. The result, however, showed that as the Enugu Coal was increased in the blend, the recovery was also decreasing. This equally affected the quality of tin metal recovered by increasing the grade. The work recommended that since the cost of production is the critical issue, 5% - 15% range of Enugu Coal should be used in preparing blends to bring down the cost of imported anthracite which is put at $906.69 per ton. The use of 15% Enugu coal will result in lowering the cost of imported anthracite by $136.0.展开更多
The poor-reactivity anthracite urgently needs more ways for large-scale and high-quality utilization.Due to the advantage of good fuel adaptability,the circulating fluidized bed(CFB)gasification technology has the pot...The poor-reactivity anthracite urgently needs more ways for large-scale and high-quality utilization.Due to the advantage of good fuel adaptability,the circulating fluidized bed(CFB)gasification technology has the potential of high-quality utilization of anthracite.In this paper,one kind of anthracite from Shanxi province,China,was employed to be gasified in a pilot-scale CFB gasifier.It is found that at the operating temperature of 1049℃and oxygen concentration of 60.75%,the gas with a concentration of combustibles of 66%and a low heating value of 7.93 MJ/m^(3)(at about 25℃and 101.325 kPa)was produced in the CFB gasification process.However,the overall gasification efficiency was not desired because a large amount of gasification fly ash(GFA)escaped and its yield was up to 22%.In this case,the cold gas efficiency was below 48%and the carbon conversion ratio was only 62%.Further analysis reveals that the GFA was featured with a developed pore structure and the specific surface area(S_(BET))reached 277 m^(2)/g.This indicates such GFA has a potential to use as activated carbon(AC)or AC precursor.Basis on this,steam activation experiments of the GFA produced were conducted to investigate the activation characteristics of GFA and thereby to determine its activation potential.Experimental results indicate that increasing temperature sharply accelerated the activation process,while did not impair the maximum activation effect.After activation,the S_(BET)of GFA maximumly increased by 63%,reaching452 m^(2)/g.With the progress of activation,the pore structure of GFA presents a three-stage evolution process:development,dynamic balance,and collapse.Such a process can be divided and quantified according to the carbon loss.In order to achieve an optimal activation of GFA,the carbon loss shall be controlled at~15%.This work provides a new scheme for high-quality utilization of anthracite.展开更多
Coal-derived natural graphite(CDNG)has multiple industrial applications.Here,ten metamorphic coals from anthracite to CDNG were obtained from Lutang and Xinhua in the Hunan Province and Panshi in the Jilin Province.Bu...Coal-derived natural graphite(CDNG)has multiple industrial applications.Here,ten metamorphic coals from anthracite to CDNG were obtained from Lutang and Xinhua in the Hunan Province and Panshi in the Jilin Province.Bulk characterization(proximate and ultimate analyses,X-Ray powder diffraction(XRD),and powder Raman spectroscopy),along with optical microscopy,scanning electron microscope(SEM)and micro-Raman spectroscopy were utilized to examine the transitions from anthracite to semi-graphite to CDNG.The XRD and Raman spectroscopy data indicate that from anthracite to highly ordered graphite the average crystal diameter(La)and height(Lc)increased from 6.1 and 4.6 nm to 34.8 and 27.5 nm,respectively.The crystalline parameters of the CDNG samples from Panshi and Lutang varied slightly when closer to the intrusive body.Optical microscopy and SEM indicated that in the anthracite samples there were thermoplastic vitrinite,devolatilized vitrinite,and some“normal”macerals.In the meta-anthracite,pyrolytic carbon,mosaic structure,and crystalline tar were present.In the CDNG there were flake graphite,crystalline aggregates,and matrix graphite.The crystalline aggregates show the highest structural ordering degree as determined from Raman spectral parameters(full-width at half maxima(G-FWHM)~20 cm^(−1),D1/(D1+D2+G)area ratio(R2)value<0.5).The flake graphite is less ordered with G-FWHM~28 cm^(−1) and 0.5<R2<1,but a larger grain size(up to 50μm).The mosaic structures were likely the precursors of the matrix graphite through in situ solid-state transformation.The pyrolytic carbon and crystalline tars are the transient phase of gas-state and liquid-state transformations.This study is beneficial to realize the rational utilization of CDNG.展开更多
A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion cha...A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion chamber (DFCC) has a diameter of 260 mm and a height of 3,000 mm. Combustion experiments were carded out using pulverized anthracite with 6.74% volatile content. This low volatile coal is difficult to ignite and burn out. Therefore, it requires longer burnout time and higher combustion temperature, which results in larger NOx emis- sions. In the current study, important factors that influence the combustion characteristics and NOx emissions were investigated such as excess air ratio, air ratio in the reducing zone, and fuel residence time in the reducing zone. Pulverized anthracite can be quickly preheated up to 800~C in CFB when the primary air is 24% of theo- retical air for combustion, and the temperature profile is uniform in DFCC. The combustion efficiency is 94.2%, which is competitive with other anthracite combustion technologies. When the excess air ratio ranges from 1.26 to 1.67, the coal-N conversion ratio is less than 32% and the NOx emission concentration is less than 371 mg/m^3 (@6% O2). When the air ratio in the reducing zone is 0.12, the NOx concentration is 221 mg/m^3 (@6% O2), and the coal-N conversion ratio is 21%, which is much lower than that of other boilers.展开更多
In order to effectively recycle resource for the benefit of the global environment, the utilization of waste plastics as auxiliary injectant for blast furnaces is becoming increasingly important. Combustion kinetics o...In order to effectively recycle resource for the benefit of the global environment, the utilization of waste plastics as auxiliary injectant for blast furnaces is becoming increasingly important. Combustion kinetics of plastics-coal blends with 0, 10%, 20% and 40% waste plastics (WP) are investigated separately by thermogravimetric analysis (TGA) from ambient temperature to 900 ℃ in air atmosphere. These blends are combusted at the heating rates of 5, 10 and 20 ℃/min. The results indicate that, with the increase of waste plastics content, the combustion processes of blends could be divided into one stage, two stages and three stages. The waste plastics content and heating rates have important effects on the main combustion processes of blends. With the increase of waste plastics content, the ignition temperature and the final combustion temperature of blends tend to decrease, while the combustion reaction becomes fiercer. With the increase of the heating rate, the ignition temperature, the mass loss rate of the peaks and the final combustion temperature of blends combustion tend to increase. The Flynn-Wall-Ozawa (FWO) iso-conversional method is used for the kinetic analysis of the main combustion process. The results indicate that, when the waste plastics content varied from 0 to 40%, the values of activation energy increase from 126.05 to 184.12 kJ /mol.展开更多
To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of...To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of sub-high-temperature and sub-high-pressure deformation experiments were performed. All samples maintained primary structure, which were collected from the Qudi Mine in the southern Qinshui Basin of China. The samples were analyzed by ultimate analysis, Vitrinite Reflection(VR), Fourier Transform Infrared spectroscopy(FTIR), and Raman spectroscopy both before and after deformation experiments for contrasting. The results showed that the VR values of all samples after experiments were significantly higher than before experiments, which suggested that the metamorphism degree of anthracite coals was increased by deformation. The results also indicated that both temperature and strain rate had significant effects on the chemical structure of anthracite coals. At a high strain rate of 4×10?5 s?1, the deformation of the samples was mainly brittle in which the mechanical energy was transformed mainly into frictional energy. In this situation, all samples developed several distinct fractured surfaces and the change of chemical structures was not obvious. On the contrary, with the decrease of the strain rates, the ductile deformation was dominated and the mechanical energy was mainly transformed into strain energy, resulting in the accumulation of deformation energy confessed by increasing quantity of dislocation and creep in the coal's interior nucleus. The absorption in the aromatic ring groups increased; otherwise the absorption in the aliphatic structures and ether oxygen groups decreased rapidly. During these experiments, CO was collected from two experimental samples. The number of aromatic rings and the structure defects within the two generated gas samples increased and the degree of molecular structure orders decreased.展开更多
The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracit...The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by X- ray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite 〉 biological ceramsite 〉 shale 〉 quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand.展开更多
This study aims to determine the effects of nanoscale pores system characteristics on CH4 adsorption capacity in anthracite.A total of 24 coal samples from the southern Sichuan Basin,China,were examined systemically u...This study aims to determine the effects of nanoscale pores system characteristics on CH4 adsorption capacity in anthracite.A total of 24 coal samples from the southern Sichuan Basin,China,were examined systemically using coal maceral analysis,vitrinite reflectance tests, proximate analysis,ultimate analysis,low-temperature N2 adsorption-desorption experiments,nuclear magnetic resonance (NMR)analysis,and CH4 isotherm adsorption experiments.Results show that nano-pores are divided into four types on the basis of pore size ranges:super micropores (<4 nm),micropores (4-10 nm),mesopores (10-100 nm),and macropores (>100 nm).Super micropores,micropores,and mesopores make up the bulk of coal porosity,providing extremely large adsorption space with large intemal surface area.This leads us to the conclusion that the threshold of pore diameter between adsorption pores and seepage pores is 100 nm.The "ink bottle"pores have the largest CH4 adsorption capacity, followed by semi-opened pores,whereas opened pores have the smallest CH4 adsorption capacity which indicates that anthracite pores with more irregular shapes possess higher CH4 adsorption capacity.CH4 adsorption capacity increased with the increase in NMR porosity and the bound water saturation.Moreover,CH4 adsorption capacity is positively correlated with NMR permeability when NMR permeability is less than 8 ×10^-3 md.By contrast,the two factors are negatively correlated when NMR permeability is greater than 8 × 10^-3 md.展开更多
In order to clarify the mutual effect between bituminite and anthracite in blends during industrial combustion, the influence of particle size and heating rate as well as oxygen concentration in atmosphere was analyze...In order to clarify the mutual effect between bituminite and anthracite in blends during industrial combustion, the influence of particle size and heating rate as well as oxygen concentration in atmosphere was analyzed. The results of non-isothermal thermogravimetric analysis indicated that the combustion behavior of blends was of great difference though blends were prepared with the same volatile content of 20%. The catalysis of bituminite to anthracite changed with the thermal and kinetic condition of combustion reaction, and consequently, blends with different collocations were suitable for various combustion environments. Superior combustion properties of some blends were achieved at high heating rates, while others might react faster under high oxygen-enriched atmosphere. Simultaneously, the volume model and unreacted core model as well as random pore model were introduced to fit the experimental data. The kinetic calculation results showed that the combustion of blends at different heating rates all agreed better with that of random pore model in comparison with the other two models, while the apparent activation energy of samples all decreased with the increase in heating rate. The similarity of functional group structure between bituminite and anthracite is closely related to the accordance in com-bustion stage of bituminite and anthracite in blends.展开更多
This study carries out a simulated experiment of biogenic gas generation and studies the effects of gas generation on the pore structure and molecular structure of anthracite by mercury intrusion porosimetry,X-ray dif...This study carries out a simulated experiment of biogenic gas generation and studies the effects of gas generation on the pore structure and molecular structure of anthracite by mercury intrusion porosimetry,X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR).The results show that methanogenic bacteria can produce biogenic gas from anthracite.CO_(2) and CH4 are the main components of the generated biogas.After generation,some micropores(<10 nm)and transitional pores(10–100 nm)in the coal samples transform into large pores.In the high-pressure stage(pressure>100 MPa)of the mercury intrusion test,the specific surface area decreases by 19.79%compared with that of raw coal,and the pore volume increases by 7.25%in total.Microbial action on the molecular structure causes changes in the pore reconstruction.The FT-IR data show that the side chains and hydroxyl groups of the coal molecular structure in coal are easily metabolized by methanogenic bacteria and partially oxidized to form carboxylic acids.In addition,based on the XRD data,the aromatic lamellar structure in the coal is changed by microorganisms;it decreases in lateral size(La)and stacking thickness(Lc).This study enriches the theory of biogenic coalbed gas generation and provides a pathway for enhancing the permeability of high-rank coal reservoirs.展开更多
文摘This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.
基金Supported by the National Natural Science Foundation of China (No.20376014) and Fujian Science and Technology Council Grant (HG99-01).
文摘CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressure. When the coal was impregnated with an appropriate quantity of Ca and BL mixture, the catalytic activity of CO2 gasification was enhanced obviously. With a loading of 8%Na-BL+2%Ca, the carbon conversion of three coal samples tested reaches up to 92.9%-99.3% at 950℃ within 30min. The continuous formation of alkali surface compounds such as ([-COM], [-CO2M]) and the presence of exchanged Ca, such as calcium phenolate and calcium carboxylates (COO)2Ca, contribute to the increase in catalytic efficiency, and using BL+Ca is more efficient than that adding BL only, The homogeneous model and shrinking-core model were applied to correlate the data of conversion with time and to estimate the reaction rate constants under different temperature. The corresponding reaction activation energy (Ea) and pre-exponential factor of three anthracites were estimated. It is found that Ea is in the range from 73.6 to 121.4kJ·mol^-1 in the case of BL+Ca, and 74.3 to 104.2kJ·mol^-1 when only BL was used as the catalyst, both of which are much less than that from 143.5 to 181.4kJ·mol^-1 if no catalyst used. It is clearly demonstrated that both of BL+Ca mixture and BL could be the source of cheap and effective catalyst for coal gasification.
基金financially supported by the China Postdoctoral Science Foundation and China National “Twelfth Five-Year” Plan for Science & Technology (No. 2014BAB01B02)Shenhua Ningxia Coal Industry Group for financial support and providing Taixi anthracite samplesthe support of Advanced Analysis & Computation Center of China University of Mining and Technology
文摘The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree against temperature during the graphitization process,a series of experiments were performed using Raman spectroscopy and X-ray diffraction(XRD).Subsequently,the influencing factors of the dominant reaction at different temperatures were analyzed using thermodynamics and kinetics.The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics.Temperature played a crucial role in the formation and growth of a graphitic structure.Meanwhile,multivariate mechanisms coexisted in the graphitization process.At ultrahigh temperatures,the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced.At low temperatures,the reaction is mainly controlled by dynamics,while at high temperatures,thermodynamics dominates the direction of the reaction.
基金provided by the project DPT2002K120640 funded by State Planning Organization (DPT), Turkey
文摘Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means of the t-plots and DFT methods. The surface area values were higher for rat coal samples than for anthracite one, and for the rat coal samples treated with KOH + NH4Cl + ZnCl2 at 650 °C [Rat650(2)] there are highest surface area and total pore volume, 315.6 m2·g^-1 and 0.156 ml·g^-1, respectively. The highest value of the hydrogen sorption capacity was found as 0.71% (by mass) for the rat coal sample obtained by KOH + ZnCl2 treatment at 650 °C [Rat650(1)].
基金supported by the National Natural Science Foundation of China(Nos.51974110,52074109 and 52274261)the Key Scientific and Technological Project of Henan Province(No.202102210183)the Coal Green Conversion Outstanding Foreign Scientists Foundation of Henan Province(No.GZS2020012).
文摘Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstructural evolution of anthracite in the temperature range of 1000–2800 ℃ was systematically investigated to provide a guidance for the microstructural regulation of coal-based carbon materials.The results indicate that the microstructure of anthracite undergoes an important change during carbonization-graphitization process. As the temperature increases, aromatic layers in anthracite gradually transform into disordered graphite microcrystals and further grow into ordered graphite microcrystals, and then ordered graphite microcrystals are laterally linked to form pseudo-graphite phase and eventually transformed into highly ordered graphite-like sheets. In particular, 2000–2200 ℃ is a critical temperature region for the qualitative change of ordered graphite crystallites to pseudo-graphite phase,in which the relevant structural parameters including stacking height, crystallite lateral size and graphitization degree show a rapid increase. Moreover, both aromaticity and graphitization degree have a linear positive correlation with carbonization-graphitization temperature in a specific temperature range.Besides, after initial carbonization, some defect structures in anthracite such as aliphatic carbon and oxygen-containing functional groups are released in the form of gaseous low-molecular volatiles along with an increased pore structure, and the intermediates derived from minerals could facilitate the conversion of sp^(3) amorphous carbon to sp^(2) graphitic carbon. This work provides a valuable reference for the rational design of microstructure of coal-based carbon materials.
基金Project 50374070 supported by the National Natural Science Foundation of China
文摘By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitu- tive relation of anthracite at a strain rate of ε =5-85s^-1. Generally, the dynamic stress-strain curve for this kind of anthracite under uni-axial compression has the following four stages: a non-linear loading stage, a plastic yielding stage, a strain-strengthening stage and an unloading breakage stage. Correspondingly, the initial elastic modulus Eb, the yielding strength σs and the ultimate strength σb increase along with an increasing strain rate. The time-dependent elasticity was identified when we analyzed the mechanical properties of anthracite. Based on characteristics of measured dynamic stress-strain curves and an analysis of existing rock dynamic constitutive models, as well as a preparatory simulation, a new visco-elastic damage model has been introduced in this paper. A linear spring is put parallel to two Maxwell units with different relaxation times to express two distinct plastic flows. The damage D is equal to [Eb- E(εi)]/Eb, where Eb is the beginning modulus and the E(εi) is the slope of a connected line between the origin point and any other point on a tested stress-strain curve. In the new constitutive model, one Maxwell unit with low relaxation time φ is used to describe the response of anthracite to a low strain rate, while the other, with a high relaxation time φ describes the response of anthracite to a high strain rate. Simulated stress-strain curves from the new model are consistent with the measured curves.
基金supported by the National Basic Research Program of China (No.2006CB202200)
文摘Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18 CBM wells in Zhengzhuang in Jincheng and their fissures and pores were observed by a Scanning Electron Microscope(SEM).To the naked eyes and by SEM,the pores in the Jincheng anthracite are seen to have abundant mold pores with isolated,shallow and poor connectivity(diameters between 1~50 μm) and few plant tissue pores,gas pores,and solution pores.Most of the fissures are filled with clay minerals or closed;while open fissures are not often visible in the Jincheng coal(aperture between 3~10 μm).These characteristics are determined by the high rank and high vitrinite content of the coal.The existence of too many mold pores and filled fissures does not allow the migration of methane,hence hydraulic fracture stimulation will be required and is an effective method of adding and connecting fissures to enhance CBM production.
基金financially supported by the Beijing Municipal Science & Technology Commission of China (No.Z161100002716017)the Key Program of the National Natural Science Foundation of China (No. U1260202)the 111 Project (No. B13004)
文摘The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.
文摘The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,India.The SiO_(2)content(48.05 wt%to 65.09 wt%and 35.92 wt%to 50.11 wt%in the bituminous and anthracite samples,respectively)and the ratio of Al_(2)O_(3)/TiO_(2)(6.97 to 17.03 in the bituminous coal samples and 10.34 to 20.07 in the anthracite samples)reveal the intermediate igneous source rock composition of the minerals.The ratio of the K_(2)O/Al_(2)O_(3)in the ash yield of the bituminous coal samples(0.03 to 0.09)may suggest the presence of kaolinite mixed with montmorillonite,while its range in the ash yield of the anthracite samples(0.16 to 0.27)may imply the presence of illite mixed with kaolinite.The chemical index of alteration values may suggest the moderate to strong chemical weathering of the source rock under sub-humid to humid climatic conditions.The plot of the bituminous coal samples in the A–CN–K diagram depicts the traditional weathering trend of parent rocks,but the anthracite samples plot near the illite feld and are a bit ofset from the weathering trend.This may imply the plausible infuences of the potassium-metasomatism at post coalifcation stages,which is further supported by high K_(2)O/Na_(2)O ratio(29.88–80.13).The Fourier transform infrared spectra further reveal the hydroxyl stretching intensity of illite in the anthracite samples substantiating the efect of the epigenetic potassium-metasomatism.The decrease in total kaolinite intensity/compound intensity of quartz and feldspar may provide additional evidence towards this epigenetic event.
基金Project 2004300z019 supported by the Ningxia Municipal Torch Science and Technology
文摘The fundamental question of super-low-ash coal preparation is how to furthest depress high ash component pollution. A jigging process was used to remove high ash refuse and middling, then a high precision heavy medium cyclone was used to further separate near gravity light material. A two-stage heavy medium cylindrical cyclone with the same separation density was used to increase the precision of separation. The feed was de-slimed and fine-grind coal was added with media to improve the stability of the suspension. The pump frequency conversion timing and an air spring were used to steady the cyclone inlet pressure. Based on a series of study and pilot tests, a 1.00 Mt/a (output) commercial separation system with Ep value under 0.015 was built up. Super low ash (Ad≤2.00%) Taixi Anthracite has been put into commercial production.
文摘The effects of blending Enugu coal and anthracite on tin smelting using Nigerian Dogo Na Hauwa cassiterite have been studied. The work utilized various blends ranging from 100% to 0% anthracite. The content of the Enugu coal in the blend varied from 5% to 100%. The various tin metal recovery percentage for each batch of smelting using various blends was noted. Anthracite alone had the highest recovery of 71.90% followed by 5% blend of Enugu with anthracite. The result, however, showed that as the Enugu Coal was increased in the blend, the recovery was also decreasing. This equally affected the quality of tin metal recovered by increasing the grade. The work recommended that since the cost of production is the critical issue, 5% - 15% range of Enugu Coal should be used in preparing blends to bring down the cost of imported anthracite which is put at $906.69 per ton. The use of 15% Enugu coal will result in lowering the cost of imported anthracite by $136.0.
基金financially supported by the Special Research Assistant Project,Chinese Academy of Sciences。
文摘The poor-reactivity anthracite urgently needs more ways for large-scale and high-quality utilization.Due to the advantage of good fuel adaptability,the circulating fluidized bed(CFB)gasification technology has the potential of high-quality utilization of anthracite.In this paper,one kind of anthracite from Shanxi province,China,was employed to be gasified in a pilot-scale CFB gasifier.It is found that at the operating temperature of 1049℃and oxygen concentration of 60.75%,the gas with a concentration of combustibles of 66%and a low heating value of 7.93 MJ/m^(3)(at about 25℃and 101.325 kPa)was produced in the CFB gasification process.However,the overall gasification efficiency was not desired because a large amount of gasification fly ash(GFA)escaped and its yield was up to 22%.In this case,the cold gas efficiency was below 48%and the carbon conversion ratio was only 62%.Further analysis reveals that the GFA was featured with a developed pore structure and the specific surface area(S_(BET))reached 277 m^(2)/g.This indicates such GFA has a potential to use as activated carbon(AC)or AC precursor.Basis on this,steam activation experiments of the GFA produced were conducted to investigate the activation characteristics of GFA and thereby to determine its activation potential.Experimental results indicate that increasing temperature sharply accelerated the activation process,while did not impair the maximum activation effect.After activation,the S_(BET)of GFA maximumly increased by 63%,reaching452 m^(2)/g.With the progress of activation,the pore structure of GFA presents a three-stage evolution process:development,dynamic balance,and collapse.Such a process can be divided and quantified according to the carbon loss.In order to achieve an optimal activation of GFA,the carbon loss shall be controlled at~15%.This work provides a new scheme for high-quality utilization of anthracite.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.41672150 and 42002187)the Scholarship from the China Scholarship Council(No.201906430017).
文摘Coal-derived natural graphite(CDNG)has multiple industrial applications.Here,ten metamorphic coals from anthracite to CDNG were obtained from Lutang and Xinhua in the Hunan Province and Panshi in the Jilin Province.Bulk characterization(proximate and ultimate analyses,X-Ray powder diffraction(XRD),and powder Raman spectroscopy),along with optical microscopy,scanning electron microscope(SEM)and micro-Raman spectroscopy were utilized to examine the transitions from anthracite to semi-graphite to CDNG.The XRD and Raman spectroscopy data indicate that from anthracite to highly ordered graphite the average crystal diameter(La)and height(Lc)increased from 6.1 and 4.6 nm to 34.8 and 27.5 nm,respectively.The crystalline parameters of the CDNG samples from Panshi and Lutang varied slightly when closer to the intrusive body.Optical microscopy and SEM indicated that in the anthracite samples there were thermoplastic vitrinite,devolatilized vitrinite,and some“normal”macerals.In the meta-anthracite,pyrolytic carbon,mosaic structure,and crystalline tar were present.In the CDNG there were flake graphite,crystalline aggregates,and matrix graphite.The crystalline aggregates show the highest structural ordering degree as determined from Raman spectral parameters(full-width at half maxima(G-FWHM)~20 cm^(−1),D1/(D1+D2+G)area ratio(R2)value<0.5).The flake graphite is less ordered with G-FWHM~28 cm^(−1) and 0.5<R2<1,but a larger grain size(up to 50μm).The mosaic structures were likely the precursors of the matrix graphite through in situ solid-state transformation.The pyrolytic carbon and crystalline tars are the transient phase of gas-state and liquid-state transformations.This study is beneficial to realize the rational utilization of CDNG.
基金supported by the National Natural Science Foundation of China(51006103)
文摘A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion chamber (DFCC) has a diameter of 260 mm and a height of 3,000 mm. Combustion experiments were carded out using pulverized anthracite with 6.74% volatile content. This low volatile coal is difficult to ignite and burn out. Therefore, it requires longer burnout time and higher combustion temperature, which results in larger NOx emis- sions. In the current study, important factors that influence the combustion characteristics and NOx emissions were investigated such as excess air ratio, air ratio in the reducing zone, and fuel residence time in the reducing zone. Pulverized anthracite can be quickly preheated up to 800~C in CFB when the primary air is 24% of theo- retical air for combustion, and the temperature profile is uniform in DFCC. The combustion efficiency is 94.2%, which is competitive with other anthracite combustion technologies. When the excess air ratio ranges from 1.26 to 1.67, the coal-N conversion ratio is less than 32% and the NOx emission concentration is less than 371 mg/m^3 (@6% O2). When the air ratio in the reducing zone is 0.12, the NOx concentration is 221 mg/m^3 (@6% O2), and the coal-N conversion ratio is 21%, which is much lower than that of other boilers.
基金Item Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China (2008BAB32B05)
文摘In order to effectively recycle resource for the benefit of the global environment, the utilization of waste plastics as auxiliary injectant for blast furnaces is becoming increasingly important. Combustion kinetics of plastics-coal blends with 0, 10%, 20% and 40% waste plastics (WP) are investigated separately by thermogravimetric analysis (TGA) from ambient temperature to 900 ℃ in air atmosphere. These blends are combusted at the heating rates of 5, 10 and 20 ℃/min. The results indicate that, with the increase of waste plastics content, the combustion processes of blends could be divided into one stage, two stages and three stages. The waste plastics content and heating rates have important effects on the main combustion processes of blends. With the increase of waste plastics content, the ignition temperature and the final combustion temperature of blends tend to decrease, while the combustion reaction becomes fiercer. With the increase of the heating rate, the ignition temperature, the mass loss rate of the peaks and the final combustion temperature of blends combustion tend to increase. The Flynn-Wall-Ozawa (FWO) iso-conversional method is used for the kinetic analysis of the main combustion process. The results indicate that, when the waste plastics content varied from 0 to 40%, the values of activation energy increase from 126.05 to 184.12 kJ /mol.
基金supported by National Natural Science Foundation of China(Grant No.41030422)Strategic Leading Special Science and Technology from Academy of Chinese Academy of Sciences(Grant No.XDA05030100)
文摘To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of sub-high-temperature and sub-high-pressure deformation experiments were performed. All samples maintained primary structure, which were collected from the Qudi Mine in the southern Qinshui Basin of China. The samples were analyzed by ultimate analysis, Vitrinite Reflection(VR), Fourier Transform Infrared spectroscopy(FTIR), and Raman spectroscopy both before and after deformation experiments for contrasting. The results showed that the VR values of all samples after experiments were significantly higher than before experiments, which suggested that the metamorphism degree of anthracite coals was increased by deformation. The results also indicated that both temperature and strain rate had significant effects on the chemical structure of anthracite coals. At a high strain rate of 4×10?5 s?1, the deformation of the samples was mainly brittle in which the mechanical energy was transformed mainly into frictional energy. In this situation, all samples developed several distinct fractured surfaces and the change of chemical structures was not obvious. On the contrary, with the decrease of the strain rates, the ductile deformation was dominated and the mechanical energy was mainly transformed into strain energy, resulting in the accumulation of deformation energy confessed by increasing quantity of dislocation and creep in the coal's interior nucleus. The absorption in the aromatic ring groups increased; otherwise the absorption in the aliphatic structures and ether oxygen groups decreased rapidly. During these experiments, CO was collected from two experimental samples. The number of aromatic rings and the structure defects within the two generated gas samples increased and the degree of molecular structure orders decreased.
基金supported by the Important National Science and Technology Specific Projects (No. 2013ZX07206001)the National Research Foundation Singapore under its Campus for Research Excellence and Technological EnterpriseScience and Technology Commission of Shanghai Municipality Projects (No. 09DZ1200109)
文摘The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by X- ray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite 〉 biological ceramsite 〉 shale 〉 quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand.
基金This research was funded by the Open Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences)(No.TPR-2016-04)the Open Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral,(Shandong University of Science and Technology)(No. DMSM2017031)+3 种基金the Youth Science and Technology Innovation Fund Project (Xi'an Shiyou University)(No.290088259)the National Science and Technology Major Project (No.2017ZX05039001-002)the National Natural Science Foundation of China (Grant Nos.41702127 and 41772150)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.17JK0617).
文摘This study aims to determine the effects of nanoscale pores system characteristics on CH4 adsorption capacity in anthracite.A total of 24 coal samples from the southern Sichuan Basin,China,were examined systemically using coal maceral analysis,vitrinite reflectance tests, proximate analysis,ultimate analysis,low-temperature N2 adsorption-desorption experiments,nuclear magnetic resonance (NMR)analysis,and CH4 isotherm adsorption experiments.Results show that nano-pores are divided into four types on the basis of pore size ranges:super micropores (<4 nm),micropores (4-10 nm),mesopores (10-100 nm),and macropores (>100 nm).Super micropores,micropores,and mesopores make up the bulk of coal porosity,providing extremely large adsorption space with large intemal surface area.This leads us to the conclusion that the threshold of pore diameter between adsorption pores and seepage pores is 100 nm.The "ink bottle"pores have the largest CH4 adsorption capacity, followed by semi-opened pores,whereas opened pores have the smallest CH4 adsorption capacity which indicates that anthracite pores with more irregular shapes possess higher CH4 adsorption capacity.CH4 adsorption capacity increased with the increase in NMR porosity and the bound water saturation.Moreover,CH4 adsorption capacity is positively correlated with NMR permeability when NMR permeability is less than 8 ×10^-3 md.By contrast,the two factors are negatively correlated when NMR permeability is greater than 8 × 10^-3 md.
基金This work was financially supported by Natural Science and Foundation of Liaoning Province (No. 20170540455)National Natural Science Foundation of China (51504131, 51474124, 51647639).
文摘In order to clarify the mutual effect between bituminite and anthracite in blends during industrial combustion, the influence of particle size and heating rate as well as oxygen concentration in atmosphere was analyzed. The results of non-isothermal thermogravimetric analysis indicated that the combustion behavior of blends was of great difference though blends were prepared with the same volatile content of 20%. The catalysis of bituminite to anthracite changed with the thermal and kinetic condition of combustion reaction, and consequently, blends with different collocations were suitable for various combustion environments. Superior combustion properties of some blends were achieved at high heating rates, while others might react faster under high oxygen-enriched atmosphere. Simultaneously, the volume model and unreacted core model as well as random pore model were introduced to fit the experimental data. The kinetic calculation results showed that the combustion of blends at different heating rates all agreed better with that of random pore model in comparison with the other two models, while the apparent activation energy of samples all decreased with the increase in heating rate. The similarity of functional group structure between bituminite and anthracite is closely related to the accordance in com-bustion stage of bituminite and anthracite in blends.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019QNA33)。
文摘This study carries out a simulated experiment of biogenic gas generation and studies the effects of gas generation on the pore structure and molecular structure of anthracite by mercury intrusion porosimetry,X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR).The results show that methanogenic bacteria can produce biogenic gas from anthracite.CO_(2) and CH4 are the main components of the generated biogas.After generation,some micropores(<10 nm)and transitional pores(10–100 nm)in the coal samples transform into large pores.In the high-pressure stage(pressure>100 MPa)of the mercury intrusion test,the specific surface area decreases by 19.79%compared with that of raw coal,and the pore volume increases by 7.25%in total.Microbial action on the molecular structure causes changes in the pore reconstruction.The FT-IR data show that the side chains and hydroxyl groups of the coal molecular structure in coal are easily metabolized by methanogenic bacteria and partially oxidized to form carboxylic acids.In addition,based on the XRD data,the aromatic lamellar structure in the coal is changed by microorganisms;it decreases in lateral size(La)and stacking thickness(Lc).This study enriches the theory of biogenic coalbed gas generation and provides a pathway for enhancing the permeability of high-rank coal reservoirs.