期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Spatio-temporal Variation Characteristics of Extreme Climate Events and Their Teleconnections to Large-scale Ocean-atmospheric Circulation Patterns in Huaihe River Basin,China During 1959–2019
1
作者 YAO Tian ZHAO Qiang +6 位作者 WU Chuanhao HU Xiaonong XIA Chuan'an WANG Xuan SANG Guoqiang LIU Jian WANG Haijun 《Chinese Geographical Science》 SCIE CSCD 2024年第1期118-134,共17页
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of... Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB. 展开更多
关键词 extreme climate indices Sen’s slope variation mutation test atmospheric circulation indices Pearson’s correlation analysis Huaihe River Basin(HRB) China
下载PDF
Analysis on characteristics of extreme precipitation indices and atmospheric circulation in Northern Shanxi
2
作者 Xia Cai Yan Song +3 位作者 Lin Cai Xin Su GuiHua Liang YanMing Xu 《Research in Cold and Arid Regions》 CSCD 2024年第2期84-97,共14页
This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average r... This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi. 展开更多
关键词 Northern Shanxi Extreme precipitation indices Spatio-temporal distribution and evolution MUTATIONS atmospheric circulation anomaly
下载PDF
Unprecedented Heatwave in Western North America during Late June of 2021: Roles of Atmospheric Circulation and Global Warming 被引量:4
3
作者 Chunzai WANG Jiayu ZHENG +1 位作者 Wei LIN Yuqing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期14-28,共15页
An extraordinary and unprecedented heatwave swept across western North America(i.e.,the Pacific Northwest)in late June of 2021,resulting in hundreds of deaths,a massive die-off of sea creatures off the coast,and horri... An extraordinary and unprecedented heatwave swept across western North America(i.e.,the Pacific Northwest)in late June of 2021,resulting in hundreds of deaths,a massive die-off of sea creatures off the coast,and horrific wildfires.Here,we use observational data to find the atmospheric circulation variabilities of the North Pacific and Arctic-Pacific-Canada patterns that co-occurred with the development and mature phases of the heatwave,as well as the North America pattern,which coincided with the decaying and eastward movement of the heatwave.Climate models from the Coupled Model Intercomparison Project(Phase 6)are not designed to simulate a particular heatwave event like this one.Still,models show that greenhouse gases are the main reason for the long-term increase of average daily maximum temperature in western North America in the past and future. 展开更多
关键词 HEATWAVE climate change atmospheric circulation pattern Pacific Northwest
下载PDF
Relationship between Rice Planthopper Occurrence Area in China and Atmospheric Circulation Indices 被引量:3
4
作者 季璐 朱敏 《Agricultural Science & Technology》 CAS 2012年第9期2006-2011,共6页
[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling plantho... [Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast. 展开更多
关键词 Rice planthopper atmospheric circulation Prediction models
下载PDF
27.3-day and 13.6-day Atmospheric Tide and Lunar Forcing on Atmospheric Circulation 被引量:7
5
作者 李国庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期359-374,共16页
An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from whi... An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin 展开更多
关键词 atmospheric tide subseasonal oscillation lunar influence atmospheric circulation
下载PDF
Seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring and the associated surface heat budget 被引量:5
6
作者 SUN Bo 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第3期191-197,共7页
This study investigates the seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring using snow water equivalent (SWE), snow cover frequency ... This study investigates the seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring using snow water equivalent (SWE), snow cover frequency (SCF), and 500 hPa geopotential height data. It is found that the Eurasian SWE/SCF and circulation dominant modes are stably coupled from autumn to the subsequent spring.The temporal coherence of the seasonal evolution of the dominant modes is examined.The seasonal evolution of the Eurasian circulation and SWE dominant modes exhibit good coherence, whereas the evolution of the Eurasian SCF dominant mode is incoherent during the autumn-winter transition season. This incoherence is associated with a sign-change in the SCF anomalies in Europe during the autumn-winter transition season, which is related to the wind anomalies over Europe. In addition, the surface heat budget associated with the Eurasian SWE/SCF and circulation dominant modes is analyzed. The sensible heat flux (SHF) related to the wind-induced thermal advection dominates the surface heat budget from autumn to the subsequent spring, with the largest effect during winter. The surface net shortwave radiation is mainly modulated by snow cover rather than cloud cover, which is estimated to be as important as, or likely superior to, the SHF for the surface heat budget during spring.The NCEP-NCAR surface heat flux reanalysis data demonstrate a consistency with the SWE/SCF and air temperature observational data, indicating a good capability for snow-atmosphere interaction analysis. 展开更多
关键词 EURASIA dominant mode SNOW atmospheric circulation surface heat budget
下载PDF
Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing–Tianjin–Hebei Region 被引量:63
7
作者 Ping WU Yihui DING Yanju LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第4期429-440,共12页
In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–201... In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–2013. The formation mechanisms of the severe RPHEs were investigated with focus on the atmospheric circulation and dynamic mechanisms. Results indicated that:(1) 49 RPHEs occurred during the past 34 years.(2) The severe RPHEs could be categorized into two types according to the large-scale circulation, i.e. the zonal westerly airflow(ZWA) type and the high-pressure ridge(HPR) type. When the ZWA-type RPHEs occurred, the BTH region was controlled by near zonal westerly airflow in the mid–upper troposphere.Southwesterly winds prevailed in the lower troposphere, and near-surface wind speeds were only 1–2 ms^-1. Warm and humid air originating from the northwestern Pacific was transported into the region, where the relative humidity was 70% to 80%, creating favorable moisture conditions. When the HPR-type RPHEs appeared, northwesterly airflow in the mid–upper troposphere controlled the region. Westerly winds prevailed in the lower troposphere and the moisture conditions were relatively weak.(3) Descending motion in the mid-lower troposphere caused by the above two circulation types provided a crucial dynamic mechanism for the formation of the two types of RPHEs. The descending motion contributed to a reduction in the height of the planetary boundary layer(PBL), which generated an inversion in the lower troposphere. This inversion trapped the abundant pollution and moisture in the lower PBL, leading to high concentrations of pollutants. 展开更多
关键词 Beijing–Tianjin–Hebei region regional persistent haze events atmospheric circulation dynamic mechanism
下载PDF
Possible Impacts of Barents Sea Ice on the Eurasian Atmospheric Circulation and the Rainfall of East China in the Beginning of Summer 被引量:4
8
作者 王嘉 郭裕福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期662-674,共13页
Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing t... Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing the observational data and the output of an atmospheric general circulation model (AGCM). The study indicates that the sea ice condition of the Barents Sea from May to July may be interrelated with the atmospheric circulation of June. When there is more than average sea ice in the Barents Sea, the local geopotential height of the 500-hPa level will decrease, and the same height in the Lake Baikal and Okhotsk regions will increase and decrease respectively to form a wave-chain structure over North Eurasia. This kind of anomalous height pattern is beneficial to more precipitation in the south part of East China and less in the north. 展开更多
关键词 sea ice the Barents Sea Eurasian atmospheric circulation East China precipitation
下载PDF
Anomalous Atmospheric Circulation, Heat Sources and Moisture Sinks in Relation to Great Precipitation Anomalies in the Yangtze River Valley 被引量:5
9
作者 杨辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期972-983,共12页
Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources... Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell. 展开更多
关键词 anomalous atmospheric circulation heat sources and moisture sinks anomalies great precipitation anomalies in the Yangtze River valley
下载PDF
Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan 被引量:4
10
作者 Nina K KONONOVA Nina V PIMANKINA +3 位作者 Lyudmila A YERISKOVSKAYA LI Jing BAO Weijia LIU Shiyin 《Journal of Arid Land》 SCIE CSCD 2015年第5期687-695,共9页
The amount and the form of precipitation have significant effects on glacier mass balances in high al- titude mountain areas by controlling the accumulation, the ablation and the energy balance of a glacier through im... The amount and the form of precipitation have significant effects on glacier mass balances in high al- titude mountain areas by controlling the accumulation, the ablation and the energy balance of a glacier through impact on the surface albedo. The liquid precipitation has negative effects on glacier accumulation and may in- crease the ablation of surface ice through the heat input for melting. The timing and the forms of precipitation over glacierized regions depend on the weather processes both locally and regionally. Early studies showed that regional to large-scale atmospheric circulation processes play a key role in affecting the precipitation events over glaciers. This paper analyzed the relationship between the inter-annual variability of the summertime precipitation over the Tuyuksu Glacier and the atmospheric circulation types, which related to various atmospheric circulation types in the Northern Hemisphere. Results indicated that the decrease in the duration of zonal processes and the increase in the meridional northern processes were observed in the last decade. The total summer precipitation associated with these processes also increased along with an increase of summertime solid precipitation. Although the decadal fluctuation of glaciological parameters were found in dependent of the above large-scale atmospheric circulation processes, global warming was a dominant factor leading to the mass loss in the recent decades under the back- ground of the increase in precipitation over the Tuyuksu Glacier. 展开更多
关键词 atmospheric circulation PRECIPITATION GLACIER mass balance
下载PDF
Evaluation of Atmospheric Circulation in the Southern Hemisphere in 20CRv2 被引量:4
11
作者 FAN Ke LIU Hui 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期337-342,共6页
Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR versi... Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR version 2 Reanalysis data (NCEPv2) and the Hadley Center sea-level pressure data (HadSLPv2).The results show that SH polar High,SH subtropical High,upper level split jet,cross-equatorial flow,Antarctic Oscillation (AAO),and the pattem of Pacific-South-America (PSA) has been effectively captured by 20CRv2 during 1979-2010,with an apparent zonal asymmetry of AAO in the austral winter (June-July-August,JJA).The notable upward linear trend of AAO in the entire period of 1871-2010 is represented in both 20CRv2 and HadS1Pv2.The most remarkable discrepancy of the SH climate variability between 20CRv2 and HadSLPv2 occurred in 1897-1920 and was partly caused by such factors as the paucity of meteorological and oceanographic data in the SH to be assimilated,the handling of the specified sea-ice concentration in South Pole,and imperfect climate models.The consistency of these reanalysis data is increased with the use of a large amount of satellite observation and radiosonde data,particularly after 1979. 展开更多
关键词 atmospheric circulation Southern Hemisphere climate variability 20CRv2
下载PDF
Changes of Atmospheric Circulation since the Last Interstadial as Indicated by the Lake-status Record in China 被引量:3
12
作者 XUE Bin YU Ge 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第4期836-845,共10页
The effective precipitation and the frame of atmospheric circulation in the past three key periods, i.e. 30 ka BP, 18 ka BP and 6 ka BP, have been analyzed on the basis of the palaeolake status record produced by the ... The effective precipitation and the frame of atmospheric circulation in the past three key periods, i.e. 30 ka BP, 18 ka BP and 6 ka BP, have been analyzed on the basis of the palaeolake status record produced by the Chinese Lake Status Data Base. The results show that the west-central part of China was characterized by high lake-levels at 30 ka BP, resulting from strengthened southwest monsoons; whereas the high lake stand, occurring in the west-central part of China at 18 ka BP, was caused by the southward shift and the strengthening of westerlies although the high-stand distribution was reduced. Meanwhile, the east-central part of China was under the control of strong winter monsoons at 18 ka BP. The high lake-levels, which occurred in the east-central part of China at 6 ka BP, are related to the enhanced East-Asian summer monsoons; while the lowering of the lake-level in the west-central part of China at 6 ka BP was due to the northward shift and corresponding shrink of the westerlies.A comparison between the lake status and the palaeoclimate models has shown that there do exist discrepancies between the geological evidence and the model simulations. The agreement between them provides a possible mechanical explanation on the geological phenomena, but the discrepancy shows that the model needs to be revised to a great extent. 展开更多
关键词 Lake-status Data Base atmospheric circulation Last Interstadial Last Glacial Maximum MID-HOLOCENE
下载PDF
Interannual Variability of Snow Depth over the Tibetan Plateau and Its Associated Atmospheric Circulation Anomalies 被引量:4
13
作者 Mao Jiang-Yu 《Atmospheric and Oceanic Science Letters》 2010年第4期213-218,共6页
The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data... The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon. 展开更多
关键词 Tibetan Plateau snow depth interannual variability atmospheric circulation anomalies
下载PDF
Monthly Variations of Atmospheric Circulations Associated with Haze Pollution in the Yangtze River Delta and North China 被引量:3
14
作者 Xinyu ZHANG Zhicong YIN +1 位作者 Huijun WANG Mingkeng DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期569-580,共12页
Haze pollution in early winter(December and January) in the Yangtze River Delta(YRD) and in North China(NC)are both severe;however, their monthly variations are significantly different. In this study, the dominant lar... Haze pollution in early winter(December and January) in the Yangtze River Delta(YRD) and in North China(NC)are both severe;however, their monthly variations are significantly different. In this study, the dominant large-scale atmospheric circulations and local meteorological conditions were investigated and compared over the YRD and NC in each month. Results showed that the YRD(NC) is dominated by the so-called Scandinavia(East Atlantic/West Russia)pattern in December, and these circulations weaken in January. The East Asian December and January monsoons over the YRD and NC have negative correlations with the number of haze days. The local descending motion facilitates less removal of haze pollution over the YRD, while the local ascending motion facilitates less removal of haze pollution over NC in January, despite a weaker relationship in December. Additionally, the monthly variations of atmospheric circulations showed that adverse meteorological conditions restrict the vertical(horizontal) dispersion of haze pollution in December(January) over the YRD, while the associated local weather conditions are similar in these two months over NC. 展开更多
关键词 monthly haze pollution atmospheric circulations Yangtze River Delta North China
下载PDF
Drought variability and its connection with large-scale atmospheric circulations in Haihe River Basin 被引量:3
15
作者 Jia Wei Wei-guang Wang +4 位作者 Yin Huang Yi-min Ding Jian-yu Fu Ze-feng Chen Wan-qiu Xing 《Water Science and Engineering》 EI CAS CSCD 2021年第1期1-16,共16页
Drought is one of the most widespread and devastating extreme climate events when water availability is significantly below normal levels for a long period.In recent years,the Haihe River Basin has been threatened by ... Drought is one of the most widespread and devastating extreme climate events when water availability is significantly below normal levels for a long period.In recent years,the Haihe River Basin has been threatened by intensified droughts.Therefore,characterization of droughts in the basin is of great importance for sustainable water resources management.In this study,two multi-scalar drought indices,the standardized precipitation evapotranspiration index(SPEI)with potential evapotranspiration calculated by the PenmaneMonteith equation and the standardized precipitation index(SPI),were used to evaluate the spatiotemporal variations of drought characteristics from 1961 to 2017 in the Haihe River Basin.In addition,the large-scale atmospheric circulation patterns were used to further explore the potential links between drought trends and climatic anomalies.An increasing tendency in drought duration was detected over the Haihe River Basin with frequent drought events occurring in the period from 1997 to 2003.The results derived from both SPEI and SPI demonstrated that summer droughts were significantly intensified.The analysis of large-scale atmospheric circulation patterns indicated that the intensified summer droughts could be attributed to the positive geopotential height anomalies in Asian mid-high latitudes and the insufficient water vapor fluxes transported from the south.©2021 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 DROUGHT Standardized precipitation index Standardized precipitation evapotranspiration index Large-scale atmospheric circulation
下载PDF
Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation 被引量:2
16
作者 Deliang CHEN Anders OMSTEDT 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期655-664,共10页
This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift, is removed, the residual is characterized and related to large-scale temperature and ... This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift, is removed, the residual is characterized and related to large-scale temperature and atmospheric circulation. The residual shows an overall upward trend, although this result depends on the uplift rate used. However, the seasonal distribution of the trend is uneven. There are even two months (June and August) that show a negative trend. The significant trend in August may be linked to fresh water input that is controlled by precipitation. The influence of the atmospheric conditions on the sea level is mainly manifested through zonal winds, vorticity and temperature. While the wind is important in the period January-May, the vorticity plays a main role during June and December. A successful linear multiple-regression model linking the climatic variables (zonal winds, vorticity and mean air temperature during the previous two months) and the sea level is established for each month. An independent verification of the model shows that it has considerable skill in simulating the variability. 展开更多
关键词 sea level Baltic sea atmospheric circulation TEMPERATURE Stockholm
下载PDF
Autumn Snow Cover Variability over Northern Eurasia and Roles of Atmospheric Circulation 被引量:2
17
作者 Kunhui YE Renguang WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第7期847-858,共12页
This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to N... This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to November, following the seasonal progression of the transition zones of surface air temperature(SAT). The dominant pattern of SC variability in September and October features a zonal distribution, and that in November displays an obvious west-east contrast. Surface air cooling and snowfall increase are two factors for larger SC. The relative contribution of SAT and snowfall changes to SC, however, varies with the region and depends upon the season. The downward longwave radiation and atmospheric heat advection play important roles in SAT changes. Anomalous convergence of water vapor flux contributes to enhanced snowfall.The changes in downward longwave radiation are associated with those in atmospheric water content and column thickness.Changes in snowfall and the transport of atmospheric moisture determine the atmospheric moisture content in September and October, and the snowfall appears to be a main factor for atmospheric moisture change in November. These results indicate that atmospheric circulation changes play an important role in snow variability over northern Eurasia in autumn. Overall, the coupling between autumn Eurasian snow and atmospheric circulation may not be driven by external forcing. 展开更多
关键词 Autumn Eurasian snow cover surface air temperature surface heat fluxes atmospheric circulation water vaportransport
下载PDF
Boreal Winter Rainfall Anomaly over the Tropical Indo-Pacific and Its Effect on Northern Hemisphere Atmospheric Circulation in CMIP5 Models 被引量:2
18
作者 WANG Hai LIU Qinyu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期916-925,共10页
Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over ... Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly. 展开更多
关键词 atmospheric Model Intercomparison Project tropical Indo-Pacific rainfall Northern Hemisphere atmospheric circulation anomaly boreal winter teleconnection pattern
下载PDF
Impacts of Two Types of El Nio on Atmospheric Circulation in the Southern Hemisphere 被引量:2
19
作者 孙丹 薛峰 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1732-1742,共11页
Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the ... Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea. 展开更多
关键词 eastern Pacific E1 Nifio central Pacific E1 Nino atmospheric circulation Southern Hemisphere Pacific-South America pattern
下载PDF
THE COUPLED MODE BETWEEN THE KUROSHIO REGION MARINE HEATING ANOMALY AND THE NORTH PACIFIC ATMOSPHERIC CIRCULATION IN WINTERTIME 被引量:2
20
作者 张永垂 张立凤 罗雨 《Journal of Tropical Meteorology》 SCIE 2010年第1期51-58,共8页
Using monthly reanalysis data of the National Center for Environmental Research/National Center for Atmospheric Research(NCEP/NCAR) and Objectively Analyzed Air-Sea Heat Flux(OAFlux) gathered during the winter,singula... Using monthly reanalysis data of the National Center for Environmental Research/National Center for Atmospheric Research(NCEP/NCAR) and Objectively Analyzed Air-Sea Heat Flux(OAFlux) gathered during the winter,singular vector decomposition(SVD) analysis was conducted to reveal the coupled mode between the Kuroshio marine heating anomaly and the geopotential height at 500 hPa(Z500) over the North Pacific.The first SVD mode showed that when the northern Kuroshio marine heating anomaly was positive,the Z500 in the central and western sections of the North Pacific was anomalously low.By composing the meteorological field anomalies in the positive(or negative) years,it has been revealed that while the Aleutian Low deepens(or shallows),the northwesterly wind overlying the Kuroshio strengthens(or weakens) and induces the near-surface air to be cool(or warm).Furthermore,this increases(or decreases) the upward heat flux anomaly and cools(or warms) the sea surface temperature(SST) accordingly.In the vicinity of Kuroshio and its downstream region,the vertical structure of the air temperature along the latitude is baroclinic;however,the geopotential height is equivalently barotropic,which presents a cool trough(or warm ridge) spatial structure.The divergent wind and vertical velocities are introduced to show the anomalous zonal circulation cell.These are characterized by the rising(or descending) air in the central North Pacific,which flows westward and eastward toward the upper troposphere,descends(or rises) in the Kuroshio and in the western section of North America,and then strengthens(or weakens) the mid-latitude zonal cell(MZC). 展开更多
关键词 KUROSHIO heat flux atmospheric circulation coupled mode
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部