Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-d...Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as guest molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.展开更多
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy....Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.展开更多
Droplet behavior in the wave-type flow channel is discussed, especially with the secondary .droplet generation due to impingement of droplets on the wall considered. A numerical method is suggested to simulate tile dr...Droplet behavior in the wave-type flow channel is discussed, especially with the secondary .droplet generation due to impingement of droplets on the wall considered. A numerical method is suggested to simulate tile droplet behavior in the flow field. Calculations are compared With experimental data on the ; pressure drop and separating efficiency. Good agreement exists between the calculations and air-water experiments. The numerical method developed gives a reasonable description of the droplet deposition and secondary droplet generation, and it can be applied to predict the performance of wave-type vane separators.展开更多
Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is diff...Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.展开更多
With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation metho...With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation method has been adopted to solve the co-site interference problem.But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System(ACICS)with large delay mismatching and antenna sway is relatively poor.This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels(ACBICS-2A).The system model was established,and the steady state weights and Interference Cancellation Ratio(ICR)were deduced by solving a time-varying differential equation.The relationship of ICR,system gain,modulation factor,interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis.Compared with traditional adaptive interference cancellation system,the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel.The maximum improved ICR is more than 25 dB.Finally,the theoretical and simulation results were verified by experiments.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
From July 16th to 19th,2024,2024 National Practical Technical Training on Textile Printing and Dyeing Auxiliary Preparation,organized by China Research Institute of Daily Chemical and National Engineering Research Cen...From July 16th to 19th,2024,2024 National Practical Technical Training on Textile Printing and Dyeing Auxiliary Preparation,organized by China Research Institute of Daily Chemical and National Engineering Research Center for Surfactants,and co-organized by the Dyeing and Finishing Technology Research Institute of Zhejiang Fashion Institute of Technology and the High Fastness Plant-based Dye Research Base of China Textile Engineering Society,was held successfully in Shangyu,Zhejiang Province,with 92 representatives from 64 work units from all over China.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
文摘Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as guest molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
基金supported by the following funding bodies:the National Key Research and Development Program of China(Grant No.2020YFA0608000)National Science Foundation of China(Grant Nos.42075142,42375148,42125503+2 种基金42130608)FY-APP-2022.0609,Sichuan Province Key Tech nology Research and Development project(Grant Nos.2024ZHCG0168,2024ZHCG0176,2023YFG0305,2023YFG-0124,and 23ZDYF0091)the CUIT Science and Technology Innovation Capacity Enhancement Program project(Grant No.KYQN202305)。
文摘Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.
基金Supported by the National Key Laboratory of Bubble Physics&Natural Circulation(No.51482150104JW0502).
文摘Droplet behavior in the wave-type flow channel is discussed, especially with the secondary .droplet generation due to impingement of droplets on the wall considered. A numerical method is suggested to simulate tile droplet behavior in the flow field. Calculations are compared With experimental data on the ; pressure drop and separating efficiency. Good agreement exists between the calculations and air-water experiments. The numerical method developed gives a reasonable description of the droplet deposition and secondary droplet generation, and it can be applied to predict the performance of wave-type vane separators.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Key Project of Natural Science Research of West Anhui University(Grant No.WXZR202311)+7 种基金the Natural Science Research Key Project of Education Department of Anhui Province of China(Grant Nos.KJ2021A0943,2022AH051681,and 2023AH052648)the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.AUCIEERC-2022-01)Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.2022AH010091)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)Key Project of Program for Excellent Young Talents of Anhui Universities(Grant No.gxyq ZD2019042)the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the research start-up funding project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)。
文摘Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002].
文摘With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation method has been adopted to solve the co-site interference problem.But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System(ACICS)with large delay mismatching and antenna sway is relatively poor.This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels(ACBICS-2A).The system model was established,and the steady state weights and Interference Cancellation Ratio(ICR)were deduced by solving a time-varying differential equation.The relationship of ICR,system gain,modulation factor,interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis.Compared with traditional adaptive interference cancellation system,the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel.The maximum improved ICR is more than 25 dB.Finally,the theoretical and simulation results were verified by experiments.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘From July 16th to 19th,2024,2024 National Practical Technical Training on Textile Printing and Dyeing Auxiliary Preparation,organized by China Research Institute of Daily Chemical and National Engineering Research Center for Surfactants,and co-organized by the Dyeing and Finishing Technology Research Institute of Zhejiang Fashion Institute of Technology and the High Fastness Plant-based Dye Research Base of China Textile Engineering Society,was held successfully in Shangyu,Zhejiang Province,with 92 representatives from 64 work units from all over China.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.