期刊文献+
共找到1,313篇文章
< 1 2 66 >
每页显示 20 50 100
Auxin-brassinosteroid crosstalk:Regulating rice plant architecture and grain shape
1
作者 Meidi Wu Jing Zhou +3 位作者 Qian Li Dunfan Quan Qingwen Wang Yong Gao 《The Crop Journal》 SCIE CSCD 2024年第4期953-963,共11页
Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransducti... Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransduction of these hormones and the crosstalk between their signals on the regulation of rice plantarchitecture and grain shape. 展开更多
关键词 auxin BRASSINOSTEROID auxin-brassinosteroid crosstalk Plant architecture Grain shape
下载PDF
Utilizing auxin dwarf genes to optimize seed yield and lodging resistance in rapeseed
2
作者 Hongxiang Lou Yan Peng +10 位作者 Chunyun Wang Zongkai Wang Bowen Zhao Ali Mahmoud El-Badri Maria Batool Bo Wang Jing Wang Zhenghua Xu Jie Zhao Jie Kuai Guangsheng Zhou 《The Crop Journal》 SCIE CSCD 2024年第4期1208-1221,共14页
Direct-seeding rapeseed production at high plant density raises the risk of lodging.We investigated the use of dwarf genes to improve rapeseed plant architecture to balance yield and lodging.Three genotypes with diffe... Direct-seeding rapeseed production at high plant density raises the risk of lodging.We investigated the use of dwarf genes to improve rapeseed plant architecture to balance yield and lodging.Three genotypes with different plant architectures(dwarf sca^(HS5),semi-dwarf+/sca^(HS5),and tall ^(HS5))were evaluated under varying nitrogen rates(N1,N2,and N3:120,240,and 360 kg N ha^(-1))and plant densities(D1,D2,and D3:15,45,and 75 plants m^(-2))from 2019 to 2022.The results showed that increasing N rate positively influenced yield while decreasing lodging resistance in all genotypes.Increasing plant density(D2-D3)enhanced lodging resistance and yield in sca^(HS5) and+/sca^(HS5),but reduced yield in ^(HS5).Compared to the two parents,+/sca^(HS5) exhibited moderate expressions of IAA3,GH3.15,and SAUR30 in stems under N2D3,resulting in reduced plant height and increased compactness.Additionally,+/sca^(HS5) had a thicker silique layer than ^(HS5) by 14.7%,and it had a significant correlation between branch height/angle and yield.Increasing N rate led to increased lignin and pectin contents,while cellulose content decreased.Increasing plant density resulted in greater stem cellulose content and CSLA3/7 expression in sca^(HS5) and+/sca^(HS5),but decreased in ^(HS5).Compared to ^(HS5),+/sca^(HS5) exhibited higher expressions of ARAD1 and GAUT4,along with a 51.1%increase in pectin content,leading to improved lodging resistance under N2D3.Consequently,+/sca^(HS5) showed a 46.4%higher yield and 38.9%lodging resistance than ^(HS5) under N2D3,while sca^(HS5) demonstrated strong lodging resistance but lower yield potential.Overall,this study underscores the potential of utilizing auxin dwarf genes to optimize the trade-off between yield and lodging resistance in rapeseed and the possibility of maximizing yield potential by optimizing the plant architecture of+/sca^(HS5) through nitrogen reduction and dense planting. 展开更多
关键词 RAPESEED Plant density NITROGEN LODGING auxin
下载PDF
Advances in the study of auxin early response genes:Aux/IAA,GH3,and SAUR
3
作者 Dongfang Bao Senqiu Chang +1 位作者 Xiaodong Li Yanhua Qi 《The Crop Journal》 SCIE CSCD 2024年第4期964-978,共15页
Auxin plays a crucial role in all aspects of plant growth and development.Auxin can induce the rapid and efficient expression of some genes,which are named auxin early response genes(AERGs),mainly including the three ... Auxin plays a crucial role in all aspects of plant growth and development.Auxin can induce the rapid and efficient expression of some genes,which are named auxin early response genes(AERGs),mainly including the three families:auxin/indole-3-acetic acid(Aux/IAA),Gretchen Hagen 3(GH3),and small auxin-up RNA(SAUR).Aux/IAA encodes the Aux/IAA protein,which is a negative regulator of auxin response.Aux/IAA and auxin response factor(ARF)form a heterodimer and participate in a variety of physiological processes through classical or non-classical auxin signaling pathways.The GH3 encodes auxin amide synthetase,which catalyzes the binding of auxin to acyl-containing small molecule substrates(such as amino acids and jasmonic acid),and regulates plant growth and stresses by regulating auxin homeostasis.SAURs is a class of small auxin up-regulated RNAs.SAUR response to auxin is complex,and the process may occur at the transcriptional,post-transcriptional and protein levels.With the development of multi-omics,significant progress has been made in the study of Aux/IAA,GH3,and SAUR genes,but there are still many unknowns.This review offers insight into the characteristics of Aux/IAA,GH3,and SAUR gene families,and their roles in roots,hypocotyls,leaves,leaf inclinations,flowers,seed development,stress response,and phytohormone crosstalk,and provides clues for future research on phytohormone signaling and the molecular design breeding of crops. 展开更多
关键词 auxin AUX/IAA GH3 SAUR STRESS
下载PDF
The role of the auxin-response genes MdGH3.1 and MdSAUR36 in bitter pit formation in apple
4
作者 Daqing Huang Wen Peng +3 位作者 Na Gong Lina Qiu Yongzhang Wang Haiyong Qu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1085-1098,共14页
Apples often exhibit bitter pits in response to metabolic disorders during ripening and storage;however, the mechanisms underlying the bitter pit(BP) development remain unclear. Here, metabolome and transcriptome anal... Apples often exhibit bitter pits in response to metabolic disorders during ripening and storage;however, the mechanisms underlying the bitter pit(BP) development remain unclear. Here, metabolome and transcriptome analyses were performed to investigate BP pulp of 'Fuji'. Two auxin-response genes, MdGH3.1 and MdSAUR36, were screened. Their expression as well as the auxin content in BP pulp were found to be higher than those in healthy pulp(P < 0.01). In the field, excess CO(NH2)2increased the incidence of BP. Moreover, the auxin content and MdGH3.1 expression increased in apples after nitrogen fertilization. On Day 30 before harvest, the two genes were transiently transferred to the fruit, and 20.69% and 23.21% of BP fruits were harvested. After 10 μmol·L-1auxin was infiltrated at low pressure into postharvest fruit, the increase in MdGH3.1 expression occurred earlier than that in MdSAUR36. MdGH3.1 increased the expression of MdSAUR36, but MdSAUR36 did not increase expression of MdGH3.1. Therefore, we suggest that MdGH3.1 acts upstream of MdSAUR36 during BP formation and that these genes induce BP formation by regulating auxin and phenylpropanoid biosynthesis. 展开更多
关键词 APPLE Malusdomestica auxin Bitter pit FLAVONOIDS Nitrogen fertilizer Widely targeted metabolomics
下载PDF
Silencing of early auxin responsive genes MdGH3-2/12 reduces the resistance to Fusarium solani in apple
5
作者 Qianwei Liu Shuo Xu +7 位作者 Lu Jin Xi Yu Chao Yang Xiaomin Liu Zhijun Zhang Yusong Liu Chao Li Fengwang Ma 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3012-3024,共13页
Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acet... Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD. 展开更多
关键词 Fusarium solani early auxin responsive gene apple replant disease plant hormone antioxidant
下载PDF
Overexpression of auxin/indole-3-acetic acid gene MdIAA24 enhances Glomerella leaf spot resistance in apple(Malus domestica)
6
作者 Qian Wang Dong Huang +2 位作者 Wenyan Tu Fengwang Ma Changhai Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期15-24,共10页
Auxin is throughout the entire life process of plants and is involved in the crosstalk with other hormones,yet its role in apple disease resistance remains unclear.In this study,we investigated the function of auxin/i... Auxin is throughout the entire life process of plants and is involved in the crosstalk with other hormones,yet its role in apple disease resistance remains unclear.In this study,we investigated the function of auxin/indole-3-acetic acid(IAA)gene Md IAA24 overexpression in enhancing apple resistance to Glomerella leaf spot(GLS)caused by Colletotrichum fructicola(Cf).Analysis revealed that,upon Cf infection,35S::Md IAA24 plants exhibited enhanced superoxide dismutase(SOD)and peroxidase(POD)activity,as well as a greater amount of glutathione(reduced form)and ascorbic acid accumulation,resulting in less H_(2)O_(2)and superoxide anion(O_(2)^(-))in apple leaves.Furthermore,35S::Md IAA24 plants produced more protocatechuic acid,proanthocyanidins B1,proanthocyanidins B2 and chlorogenic acid when infected with Cf.Following Cf infection,35S::Md IAA24 plants presented lower levels of IAA and jasmonic acid(JA),but higher levels of salicylic acid(SA),along with the expression of related genes.The overexpression of Md IAA24 was observed to enhance the activity of chitinase andβ-1,3-glucanase in Cfinfected leaves.The results indicated the ability of Md IAA24 to regulate the crosstalk between IAA,JA and SA,and to improve reactive oxygen species(ROS)scavenging and defense-related enzymes activity.This jointly contributed to GLS resistance in apple. 展开更多
关键词 APPLE MdIAA24 Glomerella leaf spot(GLS) Antioxidant capacity auxin Salicylic acid Jasmonic acid
下载PDF
Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress
7
作者 Kaiyue Hong Yasmina Radani +2 位作者 Waqas Ahmad Ping Li Yuming Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期45-61,共17页
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo... Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress. 展开更多
关键词 Carbon monoxide nitric oxide auxin iron deficiency signal molecule PLANTS
下载PDF
Camellia sinensis CsMYB4a participates in regulation of stamen growth by interaction with auxin signaling transduction repressor CsAUX/IAA4
8
作者 Guoliang Ma Mingzhuo Li +8 位作者 Yingling Wu Changjuan Jiang Yifan Chen Dawei Xing Yue Zhao Yajun Liu Xiaolan Jiang Tao Xia Liping Gao 《The Crop Journal》 SCIE CSCD 2024年第1期188-201,共14页
Subgroup 4(Sg4)members of the R2R3-MYB are generally known as negative regulators of the phenylpropanoid pathway in plants.Our previous research showed that a R2R3-MYB Sg4 member from Camellia sinensis(CsMYB4a)inhibit... Subgroup 4(Sg4)members of the R2R3-MYB are generally known as negative regulators of the phenylpropanoid pathway in plants.Our previous research showed that a R2R3-MYB Sg4 member from Camellia sinensis(CsMYB4a)inhibits expression of some genes in the phenylpropanoid pathway,but its physiological function in the tea plant remained unknown.Here,CsMYB4a was found to be highly expressed in anther and filaments,and participated in regulating filament growth.Transcriptome analysis and exogenous auxin treatment showed that the target of CsMYB4a might be the auxin signal pathway.Auxin/indole-3-acetic acid 4(AUX/IAA4),a repressor in auxin signal transduction,was detected from a yeast two-hybrid screen using CsMYB4a as bait.Gene silencing assays showed that both CsIAA4 and CsMYB4a regulate filament growth.Tobacco plants overexpressing CsIAA4 were insensitive to exogenous a-NAA,consistent with overexpression of CsMYB4a.Protein-protein interaction experiments revealed that CsMYB4a interacts with N-terminal of CsIAA4 to prevent CsIAA4 degradation.Knock out of the endogenous NtIAA4 gene,a CsIAA4 homolog,in tobacco alleviated filament growth inhibition and a-NAA insensitivity in plants overexpressing CsMYB4a.All results strongly suggest that CsMYB4a works synergistically with CsIAA4 and participates in regulation of the auxin pathway in stamen. 展开更多
关键词 AUX/IAA4 auxin signaling CsMYB4a Subgroup 4 R2R3-MYB
下载PDF
Evidence That the Auxin Signaling Pathway Interacts with Plant Stress Response 被引量:7
9
作者 包方 李家洋 《Acta Botanica Sinica》 CSCD 2002年第5期532-536,共5页
Auxin influences a variety of developmental and physiological processes. Early reports, suggested that auxin might affect plant stress response. We have identified a number of auxin responsive genes in Arabidopsis tha... Auxin influences a variety of developmental and physiological processes. Early reports, suggested that auxin might affect plant stress response. We have identified a number of auxin responsive genes in Arabidopsis thaliana (L.) Heynh. by using cDNA an-ay and found that stress responsive genes, such as,Arabidopsis homolog of MEK kinase 1 (ATMEKK1), ReL/SpoT homolog 3 ( At-RSH3), Catalase 1 ( Cat1) and Ferritin 1 (Fer1), were down-regulated by auxin, indicating that auxin regulates ale expression of stress responsive genes. We also demonstrated that nitrilase genes, nitrilase I ( NIT]) and nitrilase 2 (NIT2) involving in indole-3-acetic acid (IAA) biosynthesis, were induced by salinity stress, suggesting that the level of IAA might increase in response to salinity stress. To dissect the signal pathway involved in the interaction, two auxin insensitive mutants, auxin resistant 2 (axr2) and auxin resistant 1-3 (axrl-3) were used. Stress responsive genes were induced by salt stress in wild type and axr2, but not in axr1-3. The result suggests that die interaction between auxin and stress responses may be linked in the ubiquitin pathway. 展开更多
关键词 auxin stress-responsive genes auxin insensitive mutants NITRILASE Arabidopsis thaliana
下载PDF
Effects of Different Kinds of Exogenous Auxin on the Growth of Rice Roots under Cadmium Stress 被引量:10
10
作者 韩明明 胡凡 +1 位作者 王凯 赵凤云 《Agricultural Science & Technology》 CAS 2010年第7期45-48,共4页
[Objective] The aim was to study the effect of different kinds of exogenous auxin on the growth of rice roots under cadmium stress.[Method] Oryza sativa L.cv Zhonghua No.11 was used as experimental materials to detect... [Objective] The aim was to study the effect of different kinds of exogenous auxin on the growth of rice roots under cadmium stress.[Method] Oryza sativa L.cv Zhonghua No.11 was used as experimental materials to detect the effect of different kinds of exogenous auxin on the growth of rice roots.[Result] The results showed that 0.1 mmol/L Cd treatment could not only increase primary,adventitious and lateral root length but also lateral root number,whereas the shoot growth was inhibited.When supplemented with different concentrations of NAA,IAA,IBA and 2,4-D,the growth of root system varied and similar change trend had been found.At the auxin concentration of 10^-9-10^-7 mol/L in particular 10^-8 mol/L,all four kinds of auxin promoted the elongation growth of primary and adventitious roots,but inhibition was observed when auxin was higher than 10^-7 mol/L.The decreased shoot growth caused by Cd could not be counteracted by supplementing with the four kinds of auxin.However,at the auxin concentration of 10^-9-10^-8 mol/L,NAA could improve rice growth under Cd stress condition.The formation and development of lateral roots on primary and adventitious roots was not only similar but also different after applying the same concentration of four auxins.[Conclusion] The addition of suitable amount of auxin under cadmium stress (such as 10^-9-10^-8 mol/L of NAA and so on) could ease the damage of cadmium on plants to a certain extent. 展开更多
关键词 auxin Cadmium Stress Rice root system
下载PDF
Quercetin Promotes Auxin Transport in Arabidopsis thaliana
11
作者 高静 黄华孙 程汉 《Agricultural Science & Technology》 CAS 2008年第2期152-153,156,共3页
Study on the role of quereentin in polar auxin transportation. Arabidopsis was cultured on medium supplemented with quereetin to observe the growth of hypoeotyls, ^14C-IAA transport assays were conducted to measure th... Study on the role of quereentin in polar auxin transportation. Arabidopsis was cultured on medium supplemented with quereetin to observe the growth of hypoeotyls, ^14C-IAA transport assays were conducted to measure the auxin transport activity. The results showed that Arabidopsis mutant auxl which had been deficient in auxin influx transportion obviously recovered the ability after eultured on the medium with quercetin. The polar auxin transport was promoted by the addition of quereetin. These results indicated that quereetin could promote polar auxin transport in vivo. 展开更多
关键词 Arabidopsis thaliana Flavonoid Quereetin Polar auxin transport
下载PDF
A Pin gene families encoding components of auxin efflux carriers in Brassica juncea
12
作者 WEIMINNI XIAOYACHEN 《Cell Research》 SCIE CAS CSCD 2002年第3期247-255,共9页
Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues from Brassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3 encoded proteins contai... Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues from Brassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3 encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities with each other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BJPIN2 and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 was expressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls. Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' technique using primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven by Bjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein, epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with different expression patterns in B. juncea suggested the presence of a gene family. 展开更多
关键词 Brassica juncea polar auxin transport auxin efflux carrier promoter.
下载PDF
Transcript Profiles of Auxin Efflux Carrier and IAA-Amido Synthetase Genes Suggest the Role of Auxin on Apple (<i>Malus</i>×<i>domestica</i>) Fruit Maturation Patterns
13
作者 Sungbong Shin Jinwook Lee +2 位作者 Dave Rudell Kate Evans Yanmin Zhu 《American Journal of Plant Sciences》 2015年第5期620-632,共13页
Auxin has been suggested to play an essential role in regulating apple fruit maturation and ripening, though the molecular function of auxin and its interaction with ethylene during apple fruit development are largely... Auxin has been suggested to play an essential role in regulating apple fruit maturation and ripening, though the molecular function of auxin and its interaction with ethylene during apple fruit development are largely unknown. To understand the function of auxin during apple fruit maturation and ripening, auxin efflux carrier and IAA-amido synthetase encoding genes were identified from the apple genome based on the results of previous microarray analysis. The expression patterns of these genes were analyzed using qRT-PCR during 10 - 12 weeks of fruit maturation for two apple cultivars: “Golden Delicious” (GD) and “Cripps Pink” (CP), which have the distinct patterns of maturation progression. Our results showed that the expressions of auxin efflux carrier and IAA-amido synthetase genes have a correlation with the timing of ethylene biosynthesis pathway activation in both cultivars. The earlier and stronger expression of MdGH3.102 and MdAECFP1 in the fruit of GD, a mid-season cultivar, correlates with the earlier activation of a pre-climacteric ethylene biosynthesis gene of MdACS3, compared with that in CP, a late-ripening apple cultivar. Results of exogenous IAA treatment indicated that the expression patterns of the genes were regulated in a fruit maturity dependent manner. Our results suggested that the dynamics of the auxin level in apple fruit cortex could be one of the key factors influencing the timing of ethylene biosynthesis pathway activation and consequently contributed to the control of the apple maturation progression. 展开更多
关键词 auxin Transport auxin-Amino Acid Conjugation Ethylene Biosynthesis Fruit Maturation Quantitative Gene Expression
下载PDF
Participation of Auxin Transport in the Early Response of the Arabidopsis Root System to Inoculation with Azospirillum brasilense
14
作者 Elizabeth Carrillo-Flores Jonanci Arreola-Rivera +4 位作者 DenníMariana Pazos-Solís Moisés Bocanegra-Mondragón Grisel Fierro-Romero MaElena Mellado-Rojas Elda Beltrán-Peña 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第11期2383-2401,共19页
The potential of Plant Growth Promoting Rhizobacteria(PGPR)has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield.A.brasilense produces a wide variety of mo... The potential of Plant Growth Promoting Rhizobacteria(PGPR)has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield.A.brasilense produces a wide variety of molecules,including the natural auxin indole-3-acetic acid(IAA),as well as other phytoregulators.However,several studies have suggested that auxin induces changes in plant development during their interaction with the bacteria.The effects of A.brasilense Sp245 on the development of Arabidopsis thaliana root were investigated to help explain the molecular basis of the interaction.The results obtained showed a decrease in primary root length from the first day and remained so throughout the exposure,accompanied by a stimulation of initiation and maturation of lateral root primordia and an increase of lateral roots.An enhanced auxin response was evident in the vascular tissue and lateral root meristems of inoculated plants.However,after five days of bacterization,the response disappeared in the primary root meristems.The role of polar auxin transport(PAT)in auxins relocation involved the PGP1,AXR4-1,and BEN2 proteins,which apparently mediated A.brasilense-induced root branching of Arabidopsis seedlings. 展开更多
关键词 auxin Azopirillum brasilense ARABIDOPSIS auxin transport lateral roots
下载PDF
Cloning and Characterization of a Candidate Auxin Plant Growth Regulator-Activated Cell Surface Hydroquinone (NADH) Oxidase
15
作者 Laura M. C. Ades Dorothy M. Morré D. James Morré 《Advances in Biological Chemistry》 2014年第7期415-427,共13页
ENOX (ECTO-NOX) proteins of the external surface of the plasma membrane catalyze oxidation of both NADH and hydroquinones and protein disulfide-thiol interchange. They exhibit both prion-like and time-keeping (clock) ... ENOX (ECTO-NOX) proteins of the external surface of the plasma membrane catalyze oxidation of both NADH and hydroquinones and protein disulfide-thiol interchange. They exhibit both prion-like and time-keeping (clock) properties. The oxidative and interchange activities alternate to generate a regular period of 24 min in length. Here we report the cloning, expression and characterization of a constitutive plant ENOX protein activated by both natural (Indole-3-acetic acid, IAA) and synthetic (2,4-dichlorophenoxyacetic acid, 2,4-D) auxin plant growth regulators with an optimum of about 1 μM, higher concentrations being less effective. The gene encoding the 213 amino acid protein (ABP20) is found in EMBL accession number U81162. Functional motifs characteristic of ENOX1 proteins, previously identified by site-directed mutagenesis, are present in the candidate auxin-activated ENOX (dNOX, ENOX5), including adenine nucleotide and copper binding motifs along with essential cysteines and a motif having homology with a previously identified auxin-binding motif. Periodicity was exhibited by both the oxidative and protein disulfide-thiol inter-change activities as is characteristic for other ENOX proteins. Activity was blocked by the ENOX2-specific quassinoid inhibitor glaucarubolone and other ENOX2 inhibitors but not by the ENOX1-specific quassinoid inhibitor simalikalactone D. Activity required both auxin and bound copper. The inactive auxin 2,3-D was without effects. 展开更多
关键词 auxin auxin-Binding Protein 2 4-D dNOX ENOX5: ECTO-NOX Proteins
下载PDF
Titanium Dioxide Nanoparticles Promote Root Growth by Interfering with Auxin Pathways in Arabidopsis thaliana
16
作者 Jiali Wei Ying Zou +1 位作者 Ping Li Xiaojun Yuan 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第4期883-891,共9页
TiO_(2) nanoparticles(nano-TiO_(2))are widely used in the world,and a considerable amount of nano-TiO_(2) is released into the environment,with toxic effects on organisms.In the various species of higher plants,growth... TiO_(2) nanoparticles(nano-TiO_(2))are widely used in the world,and a considerable amount of nano-TiO_(2) is released into the environment,with toxic effects on organisms.In the various species of higher plants,growth,including seed germination,root elongation,and biomass accumulation,is affected by nano-TiO_(2).However,the underlying molecular mechanisms remain to be elucidated.In this study,we observed that nano-TiO_(2) promoted root elongation in a dose-dependent manner.Furthermore,we found that nano-TiO_(2) elevated auxin accumulation in the root tips of the auxin marker lines DII-VENUS and DR5::GUS,and,correspondingly,quantitative real-time PCR analysis revealed that nano-TiO_(2) increased the expression levels of auxin biosynthesis-and transport-related genes.GFP fluorescence observation using transgenic PIN2-GFP indicated that nano-TiO_(2) promoted root growth by inducing PIN2 accumulation.Thus,we propose that nano-TiO_(2) promote root growth in Arabidopsis thaliana by altering the expression levels of auxin biosynthesis-and transport-related genes. 展开更多
关键词 NANOPARTICLES nano-TiO_(2) root length auxin PIN2 auxin-related genes
下载PDF
Effect of Polar Auxin Transport on Rice Root Development 被引量:4
17
作者 周大喜 殷珂 +1 位作者 许智宏 薛红卫 《Acta Botanica Sinica》 CSCD 2003年第12期1421-1427,共7页
Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two... Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots. 展开更多
关键词 polar auxin transport (PAT) rice (Oryza sativa) root development adventitious root
下载PDF
Effects of Superoxide Radical on Root System Growth and Auxin Distribution in Rice 被引量:1
18
作者 任静 冯婷婷 +4 位作者 陈振华 刘乐雨 冯永永 高华健 赵凤云 《Agricultural Science & Technology》 CAS 2012年第8期1655-1657,1663,共4页
[Objective] This study aimed to investigate the effect of superoxide radical on root system growth and auxin distribution in rice (Oryza sativa L. cv Zhonghua No.11). [Method] With rice Zhonghua No.ll as the experim... [Objective] This study aimed to investigate the effect of superoxide radical on root system growth and auxin distribution in rice (Oryza sativa L. cv Zhonghua No.11). [Method] With rice Zhonghua No.ll as the experimental material, the effects of DDC (SOD inhibitor) and Tiron (superoxide radical scavenger) on the root system growth, superoxide radical generation and root system auxin distribution in rice were analyzed. [Result] The growth and elongation of primary and adventitious roots were significantly promoted by DDC, while Tiron significantly inhibited the growth and elongation of shoots, primary roots and their lateral roots, and also suppressed the formation and growth of the adventitious roots as well as the elongation of their lateral roots. The superoxide radical was increased with the induction of DDC, while Tiron decreased the accumulation of superoxide radical. Increased accumulation of auxin in the vascular bundle and behind the elongation zone was observed in DDC- treated roots, while the treatment with Tiron resulted in a decrease of auxin in the same position. [Conclusion] This study indicated that the regulation of rice root sys- tem growth by superoxide radical was closely related with the accumulation and distribution of auxin. 展开更多
关键词 Superoxide Radical Rice Root System auxin
下载PDF
小麦和水稻auxin基因家族的生物信息学比较分析 被引量:5
19
作者 张俊红 孟成生 +4 位作者 张彩英 史峥 王笑颖 李爱丽 马峙英 《华北农学报》 CSCD 北大核心 2009年第6期15-19,共5页
根据测序获得的1条260 bp cDNA片段,通过预测发现其包含小麦植物生长素(AUXIN)基因的部分编码序列,通过电子延伸、设计引物,从小麦Mardler/7*百农3217的cDNA中扩增获得一条608 bp的cDNA片段,该基因序列数据库(GenBank)登录号为AY902381... 根据测序获得的1条260 bp cDNA片段,通过预测发现其包含小麦植物生长素(AUXIN)基因的部分编码序列,通过电子延伸、设计引物,从小麦Mardler/7*百农3217的cDNA中扩增获得一条608 bp的cDNA片段,该基因序列数据库(GenBank)登录号为AY902381(基因)和(蛋白)。编码202个氨基酸,预计蛋白的分子量为23.0 kDa,等电点为9.93。利用已经分离的小麦生长素(AUXIN)基因的保守序列为检索序列,对小麦和水稻中的AUXIN基因家族成员进行分析,利用这些基因编码蛋白序列构建系统发生树,查找在GenBank的EST数据库中查找这些基因的ESTs表达序列,分析了这些基因在细胞中的定位情况和蛋白结构的相似性,根据已知相似基因的功能,分析该基因有进一步深入研究的必要。 展开更多
关键词 小麦 水稻 植物生长素
下载PDF
LAZY1 controls rice shoot gravitropism through regulating polar auxin transport 被引量:97
20
作者 Peijin Li Yonghong Wang +6 位作者 Qian Qian Zhiming Fu Mei Wang Dali Zeng Baohua Li Xiujie Wang Jiayang Li 《Cell Research》 SCIE CAS CSCD 2007年第5期402-410,共9页
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yiel... Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants. 展开更多
关键词 LAZY1 GRAVITROPISM auxin transport tiller angle plant architecture Oryza sativa L.
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部