To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ...To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.展开更多
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ...This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.展开更多
For various applications, sensors are deployed to monitor belt regions to guarantee that every movement crossing a barrier of sensors will be detected in real-time with high accuracy and minimize the need for human su...For various applications, sensors are deployed to monitor belt regions to guarantee that every movement crossing a barrier of sensors will be detected in real-time with high accuracy and minimize the need for human support. The bartier coverage problem is introduced to model these requirements, and has been examined thoroughly in the past decades. In this survey, we state the problem definitions and systematically consider sensing models, design issues and challenges in barrier coverage problem. We also review representative algorithms in this survey. Furthermore, we provide discussions on some extensions and variants of barrier coverage problems.展开更多
When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are det...When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by two distinct sensors at the same time somewhere in this area, we say that the network provides double barrier coverage (DBC). In this paper, we propose a new planar structure of Sparse Delaunay Triangulation (SparseDT), and prove some elaborate attributes of it. We develop theoretical foundations for double barrier coverage, and propose efficient algorithms with NS2 simulator using which one can activate the necessary sensors to guarantee double barrier coverage while the other sensors go to sleep. The upper and lower bounds of number of active nodes are determined, and we show that high-speed target will be detected efficiently with this configuration.展开更多
Recently, the barrier coverage was proposed and received much attention in wireless sensor network (WSN), and the degree of the barrier coverage, one of the critical parameters of WSN, must be re-studied due to the di...Recently, the barrier coverage was proposed and received much attention in wireless sensor network (WSN), and the degree of the barrier coverage, one of the critical parameters of WSN, must be re-studied due to the difference between the barrier coverage and blanket coverage. In this paper, we propose two algorithms, namely, local tree based no-way and back (LTNWB) algorithm and sensor minimum cut sets (SMCS) algorithm, for the opened and closed belt regions to determine the degree of the barrier coverage of WSN. Our main objective is to minimize the complexity of these algorithms. For the opened belt region, both algorithms work well, and for the closed belt region, they will still come into existence while some restricted conditions are taken into consideration. Finally, the simulation results demonstrate the feasibility of the proposed algorithms.展开更多
With the increasing demand for security,building strong barrier coverage in directional sensor networks is important for effectively detecting un-authorized intrusions.In this paper,we propose an efficient scheme to f...With the increasing demand for security,building strong barrier coverage in directional sensor networks is important for effectively detecting un-authorized intrusions.In this paper,we propose an efficient scheme to form the strong barrier coverage by adding the mobile nodes one by one into the barrier.We first present the concept of target circle which determines the appropriate residence region and working direction of any candidate node to be added.Then we select the optimal relay sensor to be added into the current barrier based on its input-output ratio(barrier weight)which reflects the extension of barrier coverage.This strategy looses the demand of minimal required sensor nodes(maximal gain of each sensor)or maximal lifetime of one single barrier,leading to an augmentation of sensors to be used.Numerical simulation results show that,compared with the available schemes,the proposed method significantly reduces the minimal deploy density required to establish k-barrier,and increases the total service lifetime with a high deploy efficiency.展开更多
基金supported by the National Natural Science Foundation of China (61971470)。
文摘To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.
基金supported by the National Natural Science Foundation of China(61971470).
文摘This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.
文摘For various applications, sensors are deployed to monitor belt regions to guarantee that every movement crossing a barrier of sensors will be detected in real-time with high accuracy and minimize the need for human support. The bartier coverage problem is introduced to model these requirements, and has been examined thoroughly in the past decades. In this survey, we state the problem definitions and systematically consider sensing models, design issues and challenges in barrier coverage problem. We also review representative algorithms in this survey. Furthermore, we provide discussions on some extensions and variants of barrier coverage problems.
基金This paper is supported by the National Grand Fundamental Research 973 Program of China under Grant No.2006CB303006.
文摘When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by two distinct sensors at the same time somewhere in this area, we say that the network provides double barrier coverage (DBC). In this paper, we propose a new planar structure of Sparse Delaunay Triangulation (SparseDT), and prove some elaborate attributes of it. We develop theoretical foundations for double barrier coverage, and propose efficient algorithms with NS2 simulator using which one can activate the necessary sensors to guarantee double barrier coverage while the other sensors go to sleep. The upper and lower bounds of number of active nodes are determined, and we show that high-speed target will be detected efficiently with this configuration.
文摘Recently, the barrier coverage was proposed and received much attention in wireless sensor network (WSN), and the degree of the barrier coverage, one of the critical parameters of WSN, must be re-studied due to the difference between the barrier coverage and blanket coverage. In this paper, we propose two algorithms, namely, local tree based no-way and back (LTNWB) algorithm and sensor minimum cut sets (SMCS) algorithm, for the opened and closed belt regions to determine the degree of the barrier coverage of WSN. Our main objective is to minimize the complexity of these algorithms. For the opened belt region, both algorithms work well, and for the closed belt region, they will still come into existence while some restricted conditions are taken into consideration. Finally, the simulation results demonstrate the feasibility of the proposed algorithms.
基金This research was supported in part by the National Natural Science Foundation of China under Grant Nos.11405145,40241461,61374152,and 61876168Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LY20F020024 and LY17F030016.
文摘With the increasing demand for security,building strong barrier coverage in directional sensor networks is important for effectively detecting un-authorized intrusions.In this paper,we propose an efficient scheme to form the strong barrier coverage by adding the mobile nodes one by one into the barrier.We first present the concept of target circle which determines the appropriate residence region and working direction of any candidate node to be added.Then we select the optimal relay sensor to be added into the current barrier based on its input-output ratio(barrier weight)which reflects the extension of barrier coverage.This strategy looses the demand of minimal required sensor nodes(maximal gain of each sensor)or maximal lifetime of one single barrier,leading to an augmentation of sensors to be used.Numerical simulation results show that,compared with the available schemes,the proposed method significantly reduces the minimal deploy density required to establish k-barrier,and increases the total service lifetime with a high deploy efficiency.