A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequenc...A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequency noise. The finite element analysis(FEA) results agree well with the experimental results.It is proved that the sound transmission losses(STLs) of the proposed structures are higher than those of same surface density acoustic materials. The introduction of the magnetic mass block is different from the traditional design method, in which only a passive mass block is fixed on the membrane. The magnetic force will cause tension in the membrane, increase membrane prestress, and improve overall structural stiffness. The effects of the geometry size on the STLs are discussed in detail. The kind of method presented in this paper can provide a new means for engineering noise control.展开更多
The phospholipid membrane plays a key role in myriad biological processes and phenomena, and the arrangement structure of membrane determines its function. However, the molecular arrangement structure of phospholipids...The phospholipid membrane plays a key role in myriad biological processes and phenomena, and the arrangement structure of membrane determines its function. However, the molecular arrangement structure of phospholipids in cell membranes is difficult to detect experimentally. On the basis of molecular dynamic simulations both in a non-destructive way and at native environment, we observed and confirmed that the phospholipids self-assemble to a hexagonal arrangement structure under physiological conditions. The underlying mechanism was revealed to be that there are hexagonal arrangement regions with a lower free energy around each lipid molecule. The findings potentially advance the understanding of biological functions of phospholipid bilayers.展开更多
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depen...Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.展开更多
One kind of novel BLMs was fabricated by patch-clamp pipette technology characterized in considerably sensitive to changes of electrochemical parameters.Detectiye currents and voltage presented linear relationship whe...One kind of novel BLMs was fabricated by patch-clamp pipette technology characterized in considerably sensitive to changes of electrochemical parameters.Detectiye currents and voltage presented linear relationship when BLMs was formed and it could be confirmed by Gramicidin method.Ion current was increased by dihexyl (C_ (12)) modified ssDNA fixed on the BLMs and also indicated linear relationship to ssDNA's concentration due to the interaction of (C_ 12)-ssDNA and BLMs.Further more,the regression equations were different from BLMs fixed with ssDNA probe and a blank control BLM in the same experimental conditions.The ssDNA probe was successfully fixed on patch-clamp pipette supported-BLMs.Based on our studies,a biosensor with reactive element of patch-clamp pipette-supported BLMs has been established.展开更多
In order to achieve efficient and durable oil-water emulsion separation,the membranes possessing high separation efficiency and mechanical strength attract extensive attention and are in great demand.In present study,...In order to achieve efficient and durable oil-water emulsion separation,the membranes possessing high separation efficiency and mechanical strength attract extensive attention and are in great demand.In present study,a kind of polytetrafluoroethylene(PTFE)-based bilayer membrane was fabricated by electrospinning fibrous PTFE(fPTFE)on an expanded PTFE(ePTFE)substrate.The morphological observation revealed that the fibrous structure of the fPTFE layer could be tailored by controlling the formulation of spinning solution.The addition of appropriate polyoxyethylene(PEO)would make the fibers in the fPTFE layer finer and more uniform.As a result,the compounded membrane exhibited a small pore size of approximately 1.25µm and a substantial porosity nearing 80%.This led to super-hydrophobicity,characterized by a high water contact angle(WCA)of 149.8°,and facilitated rapid oil permeation.The water-in-oil emulsion separation experiment further confirmed that the compounded membrane not only had a high separation efficiency closing 100%,but such an outstanding separation capacity could be largely retained,either through multiple cycles of use or through strong acid(pH=1),strong alkali(pH=12),or high-temperature(100°C)treatment.Additionally,the mechanical behavior of the bilayer membrane was basically contributed by that of each layer in terms of their volume ratio.More significantly,the poor creep resistance of fPTFE layer was suppressed by compounding with ePTFE substrate.Hence,this study has laid the groundwork for a novel approach to create PTFE-based compounded membranes with exceptional overall characteristics,showing promise for applications in the realm of emulsion separation.展开更多
Due to the mechanical stability of PP layer,the PP/HDPE double-layer microporous mem brane could be prepared at a higher heat-setting temperatu re than that of PE monolayer membrane.In this work,the effects of heat-se...Due to the mechanical stability of PP layer,the PP/HDPE double-layer microporous mem brane could be prepared at a higher heat-setting temperatu re than that of PE monolayer membrane.In this work,the effects of heat-setting temperature on the pore structure and properties of PP/HDPE dou ble-layer membrane were studied.With the increase of heat-setting temperature from 120℃to 130℃,the length of connecting bridge crystal and crystallinity in the PE layer increase due to the melting of thin lamellae and the stability of connecting bridge structure during heat-setting.The corresponding air permeability,po rosity,wetta bility of liquid electrolyte and mechanical property of the heat-set microporous membrane increase,exhibiting better electrochemical performance.However,when the heat-setting temperature is further increased to 140℃,higher than the melting point of PE resin,some pores are closed since the lamellae and connecting bridges melt and shrink during heat-setting,resulting in a decrease of air permeability and porosity.In contrast,there is negligible change in the PP layer within the above heat-setting temperature region.This study successfully builds the relationship between the stable pore structure and property of microporous membrane during heat-setting,which is helpful to guide the production of high-pe rformance PP/PE/PP lithium batteries separator.展开更多
AIM: To investigate the antifibrotic effect of the freeze-dried bilayered fibrin-binding amniotic membrane as a drug delivery system on glaucoma surgery in rabbit model. The aim of this study was to prepare a novel lo...AIM: To investigate the antifibrotic effect of the freeze-dried bilayered fibrin-binding amniotic membrane as a drug delivery system on glaucoma surgery in rabbit model. The aim of this study was to prepare a novel local delivery system for the sustained and controllable release of 5-Fu. METHODS: Twenty-four Japanese white rabbits were randomized into three groups: the experimental group (ocular trabeculectomy in combination with 5-Fu loaded freeze-dried bilayered fibrin-binding amniotic membrane transplantation), the control group (ocular trabeculectomy in combination with 5-Fu) and the blank group (single trabeculectomy). HE staining, massion staining and immunohistochemistry for alpha -SMA were performed on days 7, 14, 21 and 30 following surgery. The concentration of 5-Fu in rabbit aqueous humor was examined by high performance liquid chromatography (HPLC) 3 days after the surgery. RESULTS: Statistical differences were noted in intraocular pressure among groups on day 7, 14, 21 and 30 following surgery. Histology further demonstrated that trabeculectomy in combination with freeze-dried bilayered fibrin-binding amniotic membrane yielded well wound healing and no scar formation and was beneficial for long term effect. CONCLUSION: HPLC showed a good slow-release effect with freeze-dried bilayered fibrin-binding amniotic membrane.展开更多
基金supported by the National Natural Science Foundation of China (11474230)the Fundamental Research Funds for the Central Universities (3102016QD056) for financial support
文摘A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequency noise. The finite element analysis(FEA) results agree well with the experimental results.It is proved that the sound transmission losses(STLs) of the proposed structures are higher than those of same surface density acoustic materials. The introduction of the magnetic mass block is different from the traditional design method, in which only a passive mass block is fixed on the membrane. The magnetic force will cause tension in the membrane, increase membrane prestress, and improve overall structural stiffness. The effects of the geometry size on the STLs are discussed in detail. The kind of method presented in this paper can provide a new means for engineering noise control.
基金Project supported by the National Natural Science Foundation of China(Grant No.11904231)the National Key R&D Program of China(Grant Nos.2018YFE0205501 and 2018YFB1801500)Shanghai Sailing Program,China(Grant No.19YF1434100)。
文摘The phospholipid membrane plays a key role in myriad biological processes and phenomena, and the arrangement structure of membrane determines its function. However, the molecular arrangement structure of phospholipids in cell membranes is difficult to detect experimentally. On the basis of molecular dynamic simulations both in a non-destructive way and at native environment, we observed and confirmed that the phospholipids self-assemble to a hexagonal arrangement structure under physiological conditions. The underlying mechanism was revealed to be that there are hexagonal arrangement regions with a lower free energy around each lipid molecule. The findings potentially advance the understanding of biological functions of phospholipid bilayers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11421101 and 21274005)the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
文摘One kind of novel BLMs was fabricated by patch-clamp pipette technology characterized in considerably sensitive to changes of electrochemical parameters.Detectiye currents and voltage presented linear relationship when BLMs was formed and it could be confirmed by Gramicidin method.Ion current was increased by dihexyl (C_ (12)) modified ssDNA fixed on the BLMs and also indicated linear relationship to ssDNA's concentration due to the interaction of (C_ 12)-ssDNA and BLMs.Further more,the regression equations were different from BLMs fixed with ssDNA probe and a blank control BLM in the same experimental conditions.The ssDNA probe was successfully fixed on patch-clamp pipette supported-BLMs.Based on our studies,a biosensor with reactive element of patch-clamp pipette-supported BLMs has been established.
基金supported by the National Natural Science Foundation of China(No.52233003)Project of Science and Technology Department of Sichuan Province(No.2022JDJQ0023).
文摘In order to achieve efficient and durable oil-water emulsion separation,the membranes possessing high separation efficiency and mechanical strength attract extensive attention and are in great demand.In present study,a kind of polytetrafluoroethylene(PTFE)-based bilayer membrane was fabricated by electrospinning fibrous PTFE(fPTFE)on an expanded PTFE(ePTFE)substrate.The morphological observation revealed that the fibrous structure of the fPTFE layer could be tailored by controlling the formulation of spinning solution.The addition of appropriate polyoxyethylene(PEO)would make the fibers in the fPTFE layer finer and more uniform.As a result,the compounded membrane exhibited a small pore size of approximately 1.25µm and a substantial porosity nearing 80%.This led to super-hydrophobicity,characterized by a high water contact angle(WCA)of 149.8°,and facilitated rapid oil permeation.The water-in-oil emulsion separation experiment further confirmed that the compounded membrane not only had a high separation efficiency closing 100%,but such an outstanding separation capacity could be largely retained,either through multiple cycles of use or through strong acid(pH=1),strong alkali(pH=12),or high-temperature(100°C)treatment.Additionally,the mechanical behavior of the bilayer membrane was basically contributed by that of each layer in terms of their volume ratio.More significantly,the poor creep resistance of fPTFE layer was suppressed by compounding with ePTFE substrate.Hence,this study has laid the groundwork for a novel approach to create PTFE-based compounded membranes with exceptional overall characteristics,showing promise for applications in the realm of emulsion separation.
基金financially supported by the National Natural Science Foundation of China(Nos.52173033,51773044 and51603047)Research and Development Plan for Key Areas in Guangdong Province(No.2019B090914002)+3 种基金Guangdong Province Science and Technology Plan Project(No.2016A010103030)the Project of Science Foundation of Guangdong Province(No.2021A1515011914)Foshan Science and Technology Innovation Project(No.FS0AA-KJ919-4402-0145)Commissioned development project by Lanzhou Chemical Research Center of Petro China(No.kywx-23-010,2022DJ6315)。
文摘Due to the mechanical stability of PP layer,the PP/HDPE double-layer microporous mem brane could be prepared at a higher heat-setting temperatu re than that of PE monolayer membrane.In this work,the effects of heat-setting temperature on the pore structure and properties of PP/HDPE dou ble-layer membrane were studied.With the increase of heat-setting temperature from 120℃to 130℃,the length of connecting bridge crystal and crystallinity in the PE layer increase due to the melting of thin lamellae and the stability of connecting bridge structure during heat-setting.The corresponding air permeability,po rosity,wetta bility of liquid electrolyte and mechanical property of the heat-set microporous membrane increase,exhibiting better electrochemical performance.However,when the heat-setting temperature is further increased to 140℃,higher than the melting point of PE resin,some pores are closed since the lamellae and connecting bridges melt and shrink during heat-setting,resulting in a decrease of air permeability and porosity.In contrast,there is negligible change in the PP layer within the above heat-setting temperature region.This study successfully builds the relationship between the stable pore structure and property of microporous membrane during heat-setting,which is helpful to guide the production of high-pe rformance PP/PE/PP lithium batteries separator.
基金Natural Science Foundation of Hubei Province, China (No.2008cda055)
文摘AIM: To investigate the antifibrotic effect of the freeze-dried bilayered fibrin-binding amniotic membrane as a drug delivery system on glaucoma surgery in rabbit model. The aim of this study was to prepare a novel local delivery system for the sustained and controllable release of 5-Fu. METHODS: Twenty-four Japanese white rabbits were randomized into three groups: the experimental group (ocular trabeculectomy in combination with 5-Fu loaded freeze-dried bilayered fibrin-binding amniotic membrane transplantation), the control group (ocular trabeculectomy in combination with 5-Fu) and the blank group (single trabeculectomy). HE staining, massion staining and immunohistochemistry for alpha -SMA were performed on days 7, 14, 21 and 30 following surgery. The concentration of 5-Fu in rabbit aqueous humor was examined by high performance liquid chromatography (HPLC) 3 days after the surgery. RESULTS: Statistical differences were noted in intraocular pressure among groups on day 7, 14, 21 and 30 following surgery. Histology further demonstrated that trabeculectomy in combination with freeze-dried bilayered fibrin-binding amniotic membrane yielded well wound healing and no scar formation and was beneficial for long term effect. CONCLUSION: HPLC showed a good slow-release effect with freeze-dried bilayered fibrin-binding amniotic membrane.