By applying the specific properties and the fabricating technology of the deep etched elements presented by us, the even device of deep etched binary optics has been designed and fabricated which can be used in quasi-...By applying the specific properties and the fabricating technology of the deep etched elements presented by us, the even device of deep etched binary optics has been designed and fabricated which can be used in quasi-molecule laser exposure system. This even device is light in weight, easy to adjust and has a high utilization rate of energy and is able to project well-distributed light beams. So it is better than the conventional one which was an array made up of quartz sticks. The properties and designed parameters were studied and simulated. The fabricated even was precisely tested by high precision Alpha-Steper. The testing result of the surface relief structures of the even has been profoundly analyzed by introducing “boundary errors”. The theory agrees well with the results of the experiment. This is the first successful application of the deep etched theory and technology of binary optics to the exposure system of microfabrication.展开更多
In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Seve...In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Several even splitters in the terahertz region were designed and one of the silicon-based beam splitters designed to separate one incident beam into four emergent beams has total efficiency up to 92.23 %. Zero-order diffraction efficiency was reduced to less than 0.192 % and the error of uniformity decreased to 6.51 9 10-6. These results break the limitation of even beam splitting based on the traditional scalar theory. In addition, the effects of the incident angle, wavelength, as well as the polarizing angle on the diffraction efficiency and uniformity were also investigated.展开更多
We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring g...We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring grooves.We also characterized the 3D beam pro¯le by using a crossshaped knife-edge fabricated on a silicon photo-detector.The size of the super-resolution dark spot in the tube is 0.32,which remains unchanged for4within the tube.This optical tube may¯nd applications in super-resolution microscopy,optical trapping and particle acceleration.展开更多
Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical labora...Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star.展开更多
Bessel beams have multiple applications owing to their propagation-invariant properties,including particle trapping,optical coherence tomography,and material processing.However,traditional Bessel-beam shaping techniqu...Bessel beams have multiple applications owing to their propagation-invariant properties,including particle trapping,optical coherence tomography,and material processing.However,traditional Bessel-beam shaping techniques require bulky components,which limits the development of miniaturized optical systems for integration with other devices.Here,we report a novel femtosecond laser direct writing strategy for fabricating mesoscale(from submicrometer to subcentimeter)binary optical elements with microscale resolution.This strategy utilizes femtosecond beams with a long focal depth to increase throughput while reducing the constraints on critical sample positioning.As a demonstration,we manufactured and characterized a 2.2 mm diameter binary axicon.The experimentally measured quasi-Bessel beam intensity distribution and the numerical results were remarkably consistent,demonstrating a suitable tradeoff between the overall size,efficiency,and structural fidelity.Furthermore,a compact Bessel lens containing binary axicons was constructed and successfully used for femtosecond laser mask-less ablation of periodic grating-type surface plasmon polariton excitation units.The demonstrated approach shows significant potential for fabricating customizable integrated optical components.展开更多
We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion...We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion is based on stimulated Brillouin scattering(SBS) in a single-mode optical fber. An OOK signal is converted into a BPSK signal through optical carrier absorption, for which a SBS loss of 30 MHz is used in long-haul transmission. The converted BPSK signal is reverted to an OOK signal with a corresponding SBS gain of 30 MHz for direct detection. The proposed OOK-to-BPSK and BPSK-to-OOK format conversions can be implemented in transmitter and receiver nodes by using a laser source as the Brillouin pump.展开更多
We have set up a novel system for shaping the Gaussian laser beams into super-Gaussian beams.The digital micro-mirror device(DMD)is able to modulate the laser light spatially through binary-amplitude modulation mechan...We have set up a novel system for shaping the Gaussian laser beams into super-Gaussian beams.The digital micro-mirror device(DMD)is able to modulate the laser light spatially through binary-amplitude modulation mechanism.With DMD,the irradiance of the laser beam can be redistributed flexibly and various beams with different intensity distribution can be produced.A super-Gaussian beam has been successfully shaped from the Gaussian beam with the use of DMD.This technique will be widely applied in lithography,quantum emulation and holographic optical tweezers which require precise control of beam profile.展开更多
Binary optics, where the optical element can be fabricated on a thin glass plate with micro-ion-etching film layer, has been widely applied in recent years. A novel optical scanning system for gene disease diagnostics...Binary optics, where the optical element can be fabricated on a thin glass plate with micro-ion-etching film layer, has been widely applied in recent years. A novel optical scanning system for gene disease diagnostics described in this paper has four kinds of optical devices, including beam splitters, an array lens, an array filter and detection arrays. A software was developed to design the binary optics system using an iterative method. Two beam splitters were designed and fabricated, which can divide a beam into a 9×9 array or into a 13×13 array. The beam splitters have good diffraction efficiencies (>70%) and an even energy distribution. The gene disease diagnostic system is a portable biochip and binary optics technology. The binary optical devices in the non-confocal scanning system can raise the fluorescence detection sensitivity of the micro-array hybrid biochip.展开更多
基金This work was supported by the National Natural Science Founation of China the Science and Technology Fund of Shenzhen.
文摘By applying the specific properties and the fabricating technology of the deep etched elements presented by us, the even device of deep etched binary optics has been designed and fabricated which can be used in quasi-molecule laser exposure system. This even device is light in weight, easy to adjust and has a high utilization rate of energy and is able to project well-distributed light beams. So it is better than the conventional one which was an array made up of quartz sticks. The properties and designed parameters were studied and simulated. The fabricated even was precisely tested by high precision Alpha-Steper. The testing result of the surface relief structures of the even has been profoundly analyzed by introducing “boundary errors”. The theory agrees well with the results of the experiment. This is the first successful application of the deep etched theory and technology of binary optics to the exposure system of microfabrication.
基金supported by grants from the Natural Science Foundation of China(Nos.61275167,60878036and 60178023)the Basic Research Project of Shenzhen(Nos.JCYJ20130329103020637,JCYJ20120613112628842,JCYJ20140418095735591 and JC201005280533A)
文摘In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Several even splitters in the terahertz region were designed and one of the silicon-based beam splitters designed to separate one incident beam into four emergent beams has total efficiency up to 92.23 %. Zero-order diffraction efficiency was reduced to less than 0.192 % and the error of uniformity decreased to 6.51 9 10-6. These results break the limitation of even beam splitting based on the traditional scalar theory. In addition, the effects of the incident angle, wavelength, as well as the polarizing angle on the diffraction efficiency and uniformity were also investigated.
文摘We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring grooves.We also characterized the 3D beam pro¯le by using a crossshaped knife-edge fabricated on a silicon photo-detector.The size of the super-resolution dark spot in the tube is 0.32,which remains unchanged for4within the tube.This optical tube may¯nd applications in super-resolution microscopy,optical trapping and particle acceleration.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11390374, 11422324, 11173055 and 11350110496)the Science and Technology Innovation Talent Programme of Yunnan Province (Grant No. 2013HA005)+2 种基金the Talent Project of Young Researchers of Yunnan Province (2012HB037)the Chinese Academy of Sciences (Grant No. XDB09010202)financial support from the Postdoctoral Science Foundation of China (Grant Nos. 2013M530470 and 2014T70010)
文摘Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star.
基金supported by the National Natural Science Foundation of China(62227821)Shanghai Institute of Optics and Fine Mechanics,and Chinese Academy of Sciences(Open Fund of the State Key Laboratory of High Field Laser Physics).
文摘Bessel beams have multiple applications owing to their propagation-invariant properties,including particle trapping,optical coherence tomography,and material processing.However,traditional Bessel-beam shaping techniques require bulky components,which limits the development of miniaturized optical systems for integration with other devices.Here,we report a novel femtosecond laser direct writing strategy for fabricating mesoscale(from submicrometer to subcentimeter)binary optical elements with microscale resolution.This strategy utilizes femtosecond beams with a long focal depth to increase throughput while reducing the constraints on critical sample positioning.As a demonstration,we manufactured and characterized a 2.2 mm diameter binary axicon.The experimentally measured quasi-Bessel beam intensity distribution and the numerical results were remarkably consistent,demonstrating a suitable tradeoff between the overall size,efficiency,and structural fidelity.Furthermore,a compact Bessel lens containing binary axicons was constructed and successfully used for femtosecond laser mask-less ablation of periodic grating-type surface plasmon polariton excitation units.The demonstrated approach shows significant potential for fabricating customizable integrated optical components.
基金supported by the National Natural Science Foundation of China(Nos.61007041,61090393,and 61132004)the Shanghai Chen Guang Scholars Program(No.11CG11)the Excellent PhD Holders in China Program(No.201155)
文摘We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion is based on stimulated Brillouin scattering(SBS) in a single-mode optical fber. An OOK signal is converted into a BPSK signal through optical carrier absorption, for which a SBS loss of 30 MHz is used in long-haul transmission. The converted BPSK signal is reverted to an OOK signal with a corresponding SBS gain of 30 MHz for direct detection. The proposed OOK-to-BPSK and BPSK-to-OOK format conversions can be implemented in transmitter and receiver nodes by using a laser source as the Brillouin pump.
基金supported by the National Natural Science Foundation of China(Grant No.60974038)the Project of Provincial Teaching Research in Anhui Institutions of Higher Education(Grant No.2012jyxm006)
文摘We have set up a novel system for shaping the Gaussian laser beams into super-Gaussian beams.The digital micro-mirror device(DMD)is able to modulate the laser light spatially through binary-amplitude modulation mechanism.With DMD,the irradiance of the laser beam can be redistributed flexibly and various beams with different intensity distribution can be produced.A super-Gaussian beam has been successfully shaped from the Gaussian beam with the use of DMD.This technique will be widely applied in lithography,quantum emulation and holographic optical tweezers which require precise control of beam profile.
基金Supported by the National High- TechnologyDevelopm ent Program of China (No.863 - 10 3 - 13 0 -5 0 2 ),the"973" National Natural Science Foundationof China (No.G19990 1160 3 ),the National NaturalScience Foundation of China (No.3 0 0 0 0 0 40 ) ,the
文摘Binary optics, where the optical element can be fabricated on a thin glass plate with micro-ion-etching film layer, has been widely applied in recent years. A novel optical scanning system for gene disease diagnostics described in this paper has four kinds of optical devices, including beam splitters, an array lens, an array filter and detection arrays. A software was developed to design the binary optics system using an iterative method. Two beam splitters were designed and fabricated, which can divide a beam into a 9×9 array or into a 13×13 array. The beam splitters have good diffraction efficiencies (>70%) and an even energy distribution. The gene disease diagnostic system is a portable biochip and binary optics technology. The binary optical devices in the non-confocal scanning system can raise the fluorescence detection sensitivity of the micro-array hybrid biochip.