This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was insp...This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was inspired by the starfish, which possesses a remarkable symmetrical structure and soft internal skeleton. A soft robot body was constructed by using 3D printing technology. A kinematic model of the SMA spring was built and developed for motion control according to displacement and force requirements. The locomotion inspired from starfish was applied to the implementation of the multi-ray robot through the flexible actuation induced multi-gait movements in various environments. By virtue of the proposed ray control patterns in gait transition, the soft robot was able to cross over an obstacle approximately twice of its body height. Results also showed that the speed of the soft robot was 6.5 times faster on sand than on a clammy rough terrain. These experiments demonstrated that the bionic soft robot with flexible rays actuated by SMAs and multi-gait locomotion in proposed patterns can perform successfully and smoothly in various terrains.展开更多
In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot wa...In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot to- wards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.展开更多
Recently, various kinds ofbiomimetic robots have been studied. Among these biomimetic robots, water-running robots that mimic the characteristics of basilisk lizards have received much attention. However, studies on t...Recently, various kinds ofbiomimetic robots have been studied. Among these biomimetic robots, water-running robots that mimic the characteristics of basilisk lizards have received much attention. However, studies on the performance with respect to different geometric parameters and gaits have been lacking. To run on the surface of water, a water-running robot needs suffi- cient force with high stability to stay above the water. We experimentally measured the performance of the foot pads with different geometric parameters and with various gaits. We measured and analyzed the forces in the vertical direction and rolling angles of five different foot pad shapes: a circular shape, square shape, half-spherical shape, open half-cylinder shape, and closed half-cylinder shape. Additionally, the rolling stabilities of three kinds of gaits: biped, trotting, and tripod, were also empirically analyzed. The results of this research can be used as a guideline to design a stable water-running robot.展开更多
基金Acknowledgment The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grants. 51105349, 61375095, 51275501). We are grateful to Fei Li and Chunshan Liu for their assistance in the experiments.
文摘This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was inspired by the starfish, which possesses a remarkable symmetrical structure and soft internal skeleton. A soft robot body was constructed by using 3D printing technology. A kinematic model of the SMA spring was built and developed for motion control according to displacement and force requirements. The locomotion inspired from starfish was applied to the implementation of the multi-ray robot through the flexible actuation induced multi-gait movements in various environments. By virtue of the proposed ray control patterns in gait transition, the soft robot was able to cross over an obstacle approximately twice of its body height. Results also showed that the speed of the soft robot was 6.5 times faster on sand than on a clammy rough terrain. These experiments demonstrated that the bionic soft robot with flexible rays actuated by SMAs and multi-gait locomotion in proposed patterns can perform successfully and smoothly in various terrains.
基金Acknowledgment This research has been supported by Project of Science and Technology Support Plan of Jiangsu province (Grant No. BE2012057) and Science and Technology Support Plan Key Projects of Jiangsu province (Grant No. BE2013003) and National Nature Science Foundation of China (Grant No. 51405469).
文摘In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot to- wards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.
文摘Recently, various kinds ofbiomimetic robots have been studied. Among these biomimetic robots, water-running robots that mimic the characteristics of basilisk lizards have received much attention. However, studies on the performance with respect to different geometric parameters and gaits have been lacking. To run on the surface of water, a water-running robot needs suffi- cient force with high stability to stay above the water. We experimentally measured the performance of the foot pads with different geometric parameters and with various gaits. We measured and analyzed the forces in the vertical direction and rolling angles of five different foot pad shapes: a circular shape, square shape, half-spherical shape, open half-cylinder shape, and closed half-cylinder shape. Additionally, the rolling stabilities of three kinds of gaits: biped, trotting, and tripod, were also empirically analyzed. The results of this research can be used as a guideline to design a stable water-running robot.