期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Matrix bound vesicles and miRNA cargoes are bioactive factors within extracellular matrix bioscaffolds
1
作者 Yolandi van der Merwe Anne E.Faust Michael B.Steketee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1597-1599,共3页
Injury to central nervous system (CNS) tissues in adult mam- mals often leads to neuronal loss, scarring, and permanently lost neurologic functions, and this default healing response is increasingly linked to a pro-... Injury to central nervous system (CNS) tissues in adult mam- mals often leads to neuronal loss, scarring, and permanently lost neurologic functions, and this default healing response is increasingly linked to a pro-inflammatory innate immune response. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling in various tissues and organs, including the CNS. 展开更多
关键词 ECM UBM MBV Matrix bound vesicles and miRNA cargoes are bioactive factors within extracellular matrix bioscaffolds
下载PDF
Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing 被引量:2
2
作者 Tingting Weng Jialiang Wang +5 位作者 Min Yang Wei Zhang Pan Wu Chuangang You Chunmao Han Xingang Wang 《Burns & Trauma》 SCIE 2022年第1期639-656,共18页
Dermal substitutes provide a template for dermal regeneration and reconstruction.They constitutes an ideal clinical treatment for deep skin defects.However,rapid vascularization remains as a major hurdle to the develo... Dermal substitutes provide a template for dermal regeneration and reconstruction.They constitutes an ideal clinical treatment for deep skin defects.However,rapid vascularization remains as a major hurdle to the development and application of dermal substitutes.Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital.Nanomaterials have great potential for tissue engineering.Effective delivery of bioactive factors(including growth factors,peptides and nucleic acids)by nanomaterials is of increasing research interest.This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process.The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed.We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes. 展开更多
关键词 NANOMATERIALS bioactive factors Dermal substitute ANGIOGENESIS Wound healing REGENERATION Tissue engineering VASCULARIZATION
原文传递
Inhibited superoxide-induced halide oxidation with a bioactive factor for stabilized inorganic perovskite solar cells
3
作者 Xingxing Duan Jialong Duan +10 位作者 Naimin Liu Jiabao Li Jie Dou Xinyu Zhang Qiyao Guo Yingli Wang Zhen Wang Yuanyuan Zhao Chi Jiang Jinze Li Qunwei Tang 《SusMat》 SCIE EI 2024年第4期1-13,共13页
Active oxygen highly affects the efficiency and stability of perovskite solar cells(PSCs)owing to the capacity to either passivate defects or decompose perovskite lattice.To better understand the in-depth interaction,... Active oxygen highly affects the efficiency and stability of perovskite solar cells(PSCs)owing to the capacity to either passivate defects or decompose perovskite lattice.To better understand the in-depth interaction,we demonstrate for the first time that photooxidation mechanism in all-inorganic perovskite film dominates the phase deterioration kinetics by forming superoxide species in the presence of light and oxygen,which is significantly different from that in organic-inorganic hybrid and even tin-based perovskites.In all-inorganic perovskites,the superox-ide species prefer to oxidize longer and weaker Pb-I bond to PbO and I_(2),leaving the much stable CsPbBr_(3) phase.From this chemical proof-of-concept,we employ an organic bioactive factor,Tanshinone IIA,as a superoxide sweeper to enhance the environmental tolerance of inorganic perovskite,serving as a“skincare”agent for anti-aging organisms.Combined with another key point on healing defective lattice,the best carbon-based all-inorganic CsPbI_(2)Br solar cell delivers an efficiency as high as 15.12%and superior stability against oxygen,light,humid-ity,and heat attacks.This method is also applicable to enhance the efficiency of p-i-n inverted(Cs_(0.05)MA_(0.05)FA_(0.9))Pb(I_(0.93)Br_(0.07))_(3)cell to 23.46%.These findings not only help us understand the perovskite decomposition mechanisms in depth but also provide a potential strategy for advanced PSC platforms. 展开更多
关键词 all-inorganic perovskite solar cells bioactive factor defect passivation stability superoxide formation
原文传递
Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine 被引量:1
4
作者 Peiyao Xu Ranjith Kumar Kankala +1 位作者 Shibin Wang Aizheng Chen 《Regenerative Biomaterials》 SCIE EI CSCD 2024年第3期1-29,共29页
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering,the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating nat... Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering,the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues'microenvironment.As a kind of natural tissue-derived biomaterials,decellularized extracellular matrix(dECM)-based scaffolds have gained attention due to their unique biomimetic properties,providing a specific microenvironment suitable for promoting cell proliferation,migration,attachment and regulating differentiation.The medical applications of dECM-based scaffolds have addressed critical challenges,including poor mechanical strength and insufficient stability.For promoting the reconstruction of damaged tissues or organs,dif-ferent types of dECM-based composite platforms have been designed to mimic tissue microenvironment,including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors.In this review,we summarized the research progress of dECM-based composite scaffolds in regenerative medicine,highlighting the critical challenges and future perspectives related to the medical application of these composite materials。 展开更多
关键词 decellularized extracellular matrix POLYMER bioactive factors COMPOSITES tissue engineering
原文传递
Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product 被引量:1
5
作者 Xiaolei Guo Yuan Ma +5 位作者 Yue Min Jiayi Sun Xinli Shi Guobiao Gao Lei Sun Jiadao Wang 《Bioactive Materials》 SCIE CSCD 2023年第2期501-518,共18页
Hyaline cartilage plays a critical role in maintaining joint function and pain.However,the lack of blood supply,nerves,and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage,giving... Hyaline cartilage plays a critical role in maintaining joint function and pain.However,the lack of blood supply,nerves,and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage,giving rise to various tricky issues in medicine.In the past 30 years,numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration.Here,the current therapies and their relevant advantages and disadvantages will be summarized,particularly the tissue engineering strategies.Furthermore,the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering,that is the materials,seed cells,and bioactive factors.Finally,the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. 展开更多
关键词 Tissue engineering cartilage Regulatory challenge Stem cell Scaffolds bioactive factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部