期刊文献+
共找到3,240篇文章
< 1 2 162 >
每页显示 20 50 100
Comprehensive Analysis of Indoor Formaldehyde Removal Techniques:Exploring Physical,Chemical,and Biological Methods
1
作者 Yizhe Li 《Journal of Architectural Research and Development》 2024年第1期8-13,共6页
This research focuses on the evaluation of diverse approaches for removing formaldehyde from indoor environments,which is a significant concern for indoor air quality.The study systematically examines physical,chemica... This research focuses on the evaluation of diverse approaches for removing formaldehyde from indoor environments,which is a significant concern for indoor air quality.The study systematically examines physical,chemical,and biological methods to ascertain their effectiveness in formaldehyde mitigation.Physical methods,including air circulation and adsorption,particularly with activated carbon and molecular sieves,are assessed for their efficiency in various concentration scenarios.Chemical methods,such as photocatalytic oxidation using titanium dioxide and plasma technology,are analyzed for their ability to decompose formaldehyde into non-toxic substances.Additionally,biological methods involving plant purification and microbial transformation are explored for their eco-friendly and sustainable removal capabilities.The paper concludes that while each method has its merits,a combined approach may offer the most effective solution for reducing indoor formaldehyde levels.The study underscores the need for further research to integrate these methods in a practical,cost-effective,and environmentally sustainable manner,highlighting their potential to improve indoor air quality significantly. 展开更多
关键词 Indoor air quality Formaldehyde removal Photocatalytic oxidation Activated carbon biological purification
下载PDF
Comparative study of two biological nitrogen removal processes:A/O process and step-feeding process 被引量:3
2
作者 祝贵兵 彭永臻 +1 位作者 王淑莹 马斌 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期528-531,共4页
Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi... Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability. 展开更多
关键词 activated sludge biological nitrogen removal A/O process step-feeding process efficiency
下载PDF
Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process 被引量:19
3
作者 ZHU Gui-bing PENG Yong-zhen +2 位作者 WU Shu-yun WANG Shu-ying XU Shi-wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1043-1048,共6页
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence... The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc. 展开更多
关键词 biological nitrogen removal dissolved oxygen floc size simultaneous nitrification and denitrification step feeding process
下载PDF
Achieving and maintaining biological nitrogen removal via nitrite under normal conditions 被引量:10
4
作者 CUI You-wei PENG Yong-zhen +2 位作者 GAN Xiang-qing YE Liu WANG Ya-yi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期794-797,共4页
The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments... The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments applying the sequencing batch reactor(SBR) activated sludge process to domestic wastewater with low C/N ratio. The addition of sodium chloride(NaCI) to influent was established to achieve nitrite build-up. The high nitrite accumulation, depending on the salinity in influent and the application duration of salt, was obtained in SBRs treating saline wastewater. The maintenance results indicated that the real-time SBRs can maintain stable nitrite accumulation, but conversion from shorter nitrification-denitrification to full nitrification-denitrification was observed after some operation cycles in the other SBR with fixed-time control. The presented method is valuable to offer a solution to realize and to maintain nitrogen removal via nitrite under normal conditions. 展开更多
关键词 nitrite accumulation salt selective inhibition real-time control of nitrification biological nitrogen removal via nitrite nitrite-oxidizers ammonium-oxidizers
下载PDF
Biological removal of air loaded with a hydrogen sulfide and ammonia mixture 被引量:6
5
作者 CHENYing-xu YINJun FANGShi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期656-661,共6页
The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. A... The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. An alternative control technology, biofiltration, was studied. The aim of this study is to investigate the potential of unit systems packed with compost in terms of ammonia and hydrogen sulfide emissions treatment, and to establish optimal operating conditions for a full-scale conceptual design. The laboratory scale biofilter packed with compost was continuously supplied with hydrogen sulfide and ammonia gas mixtures. A volumetric load of less than 150 gH 2S/(m3·d) and 230 gNH 3/(m3·d) was applied for about fifteen weeks. Hydrogen sulfide and ammonia elimination occurred in the biofilter simultaneously. The removal efficiency, removal capacity and removal kinetics in the biofilter were studied. The hydrogen sulfide removal efficiency reached was very high above 99%, and ammonia removal efficiency was about 80%. Hydrogen sulfide was oxidized into sulphate. The ammonia oxidation products were nitrite and nitrate. Ammonia in the biofilter was mainly removed by adsorption onto the carrier material and by absorption into the water fraction of the carrier material. High percentages of hydrogen sulfide or ammonia were oxidized in the first section of the column. Through kinetics analysis, the presence of ammonia did not hinder the hydrogen sulfide removal. According to the relationship between pressure drop and gas velocity for the biofilter and Reynolds number, non-Darcy flow can be assumed to represent the flow in the medium. 展开更多
关键词 biological removal hydrogen sulfide ammonia mixture
下载PDF
Development and Experimental Evaluation of a Steady-state Model for the Step-feed Biological Nitrogen Removal Process 被引量:7
6
作者 祝贵兵 彭永臻 +3 位作者 王淑莹 左金龙 王亚宜 郭建华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第3期411-417,共7页
In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the... In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency. 展开更多
关键词 activated siudge biological nitrogen removal OPTIMIZATION SIMULATION steady-state model step-feedprocess
下载PDF
Enhanced biological nutrients removal using an integrated oxidation ditch with vertical circle from wastewater by adding an anaerobic column 被引量:4
7
作者 WANG Shu-mei LIU Jun-xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期894-898,共5页
Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludg... Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77. 5 % was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN 〉 6, COD/TP 〉 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS· d), TN loading rate = 0. 028-0. 034 kgTN/( kgSS·d) and TP loading rate = 0.003-0.005 kgTP/(kgSS· d), respectively. 展开更多
关键词 integrative oxidation ditch with vertical circle wastewater treatment biological nutrient removal
下载PDF
Enhanced Biological Phosphorus Removal with Pseudomonas putida GM6 from Activated Sludge 被引量:9
8
作者 CAI Tian-Ming GUAN Li-Bo +4 位作者 CHEN Li-Wei CAI Shu LI Xiao-Dan CUI Zhong-Li LI Shun-Peng 《Pedosphere》 SCIE CAS CSCD 2007年第5期624-629,共6页
The enhanced biological phosphorus removal (EBPR) method is widely adopted for phosphorus removal from wastewater, yet little is known about its microbiological and molecular mechanisms. Therefore, it is difficult t... The enhanced biological phosphorus removal (EBPR) method is widely adopted for phosphorus removal from wastewater, yet little is known about its microbiological and molecular mechanisms. Therefore, it is difficult to predict and control the deterioration of the EBPR process in a large-scale municipal sewage treatment plant. This study used a novel strain isolated in the laboratory, Pseudomonas putida GM6, which had a high phosphate accumulating ability and could recover rapidly from the deteriorated system and enhance the capability of phosphorus removal in activated sludge. Strain GM6 marked with gfp gene, which was called GMTR, was delivered into a bench-scale sequencing batch reactor (SBR) of low efficiency, to investigate the colonization of GMTR and removal of phosphorus. After 21 days, the proportion of GMTR in the total bacteria of the sludge reached 9.2%, whereas the phosphorus removal rate was 96%, with an effluent concentration of about 0.2 mg L^-1. In the reactor with the addition of GMTR, phosphorus was removed quickly, in 1 h under anaerobic conditions, and in 2 h under aerobic conditions. These evidences were characteristic of EBPR processes. Field testing was conducted at a hospital sewage treatment facility with low phosphorus removal capability. Twentyone days after Pseudomonas putida GM6 was added, effluent phosphorus concentration remained around 0.3 mg L^-1, corresponding to a removal rate of 96.8%. It was therefore demonstrated that Pseudomonas putida GM6 could be used for a quick startup and enhancement of wastewater biological phosphorus removal, which provided a scientific basis for potential large-scale engineering application. 展开更多
关键词 activated sludge COLONIZATION enhanced biological phosphorus removal Pseudomonas putida GM6
下载PDF
Effect of Ferric Chloride on the Properties of Biological Sludge in Co-precipitation Phosphorus Removal Process 被引量:6
9
作者 张志斌 李艺 +3 位作者 魏垒垒 吕育锋 王猛 高宝玉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第5期564-568,共5页
This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the... This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering. 展开更多
关键词 biological phosphorous removal process chemical co-precipitation phosphorus removal process ferric chloride municipal wastewater SLUDGE
下载PDF
Experimental study on sulfur removal from ladle furnace refining slag in hot state by blowing Air 被引量:2
10
作者 Li-huaZhao Lu Lin Qi-fan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第1期33-39,共7页
In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The propo... In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron micros- copy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high tempera- ture by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the tem- perature exceeded 1350℃. At 1370℃ and 1400℃, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are benefi- cial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur re- moval. 展开更多
关键词 STEELMAKING REFINING SLAG sulfur removal OXIDATION resource utilization
下载PDF
Comparing results of cultured and uncultured biological methods used in biological phosphorus removal 被引量:3
11
作者 LIU Ya-nan XUE Gang YU Shui-li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1373-1379,共7页
Increasing attention has been paid to phosphate-accumulating organisms (PAOs) for their important role in biological phosphorus removal. In this study, microbial communities of PAOs cultivated under different carbon... Increasing attention has been paid to phosphate-accumulating organisms (PAOs) for their important role in biological phosphorus removal. In this study, microbial communities of PAOs cultivated under different carbon sources (sewage, glucose, and sodium acetate) were investigated and compared through culture-dependent and culture-independent methods, respectively. The results obtained using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction-amplified 16S rDNA fragments revealed that the diversity of bacteria in a sewage-fed reactor (1#) was much higher than in a glucose-fed one (2#) and a sodium acetate-fed one (3#); there were common PAOs in three reactors fed by different carbon sources. Five strains were separated from three systems by using a phosphaterich medium; they were from common bacteria isolated and three isolates could not be found in DGGE profile at all. Two isolates had good phosphorus removal ability. When the microbial diversity was studied, the molecular biological method was better than the culture-dependent one. When phosphorus removal characteristics were investigated, culture-dependent approach was more effective. Thus a combination of two methods is necessary to have a comprehensive view of PAOs. 展开更多
关键词 phosphate-accumulating organisms (PAOs) denaturing gradient gel electrophoresis (DGGE) biological phosphorus removal culture-dependent approach culture-independent approach
下载PDF
Effect of Sludge Retention Time on Nitrite Accumulation in Real-time Control Biological Nitrogen Removal Sequencing Batch Reactor 被引量:7
12
作者 吴昌永 彭永臻 +2 位作者 王淑莹 李晓玲 王然登 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期512-517,共6页
In this study,four sequencing batch reactors(SBR),with the sludge retention time(SRT)of 5,10,20 and 40 d,were used to treat domestic wastewater,and the effect of SRT on nitrite accumulation in the biological nitrogen ... In this study,four sequencing batch reactors(SBR),with the sludge retention time(SRT)of 5,10,20 and 40 d,were used to treat domestic wastewater,and the effect of SRT on nitrite accumulation in the biological nitrogen removal SBR was investigated.The real-time control strategy based on online parameters,such as pH,dissolved oxygen(DO)and oxidation reduction potential(ORP),was used to regulate the nitrite accumulation in SBR. The model-based simulation and experimental results showed that with the increase of SRT,longer time was needed to achieve high level of nitritation.In addition,the nitrite accumulation rate(NAR)was higher when the SRT was relatively shorter during a 112-day operation.When the SRT was 5 d,the system was unstable with the mixed liquor suspended solids(MLSS)decreased day after day.When the SRT was 40 d,the nitrification process was significantly inhibited.SRT of 10 to 20 d was more suitable in this study.The real-time control strategy combined with SRT control in SBR is an effective method for biological nitrogen removal via nitrite from wastewater. 展开更多
关键词 biological nitrogen removal nitrite accumulation real time control sludge retention time sequencing batch reactors
下载PDF
Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/ Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment 被引量:8
13
作者 胡香 谢丽 +2 位作者 SHIM Hojae 张善发 杨殿海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第4期447-454,共8页
A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C... A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process. 展开更多
关键词 biological nutrient removal low C/N ratio wastewater membrane bioreactor DENITRIFICATION external carbon source
下载PDF
Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration 被引量:7
14
作者 鲁骎 毋海燕 +1 位作者 李昊岩 杨殿海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期1027-1034,共8页
A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of... A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test. 展开更多
关键词 Modified AAO process Carbon source distribution ratio Returned activated sludge pre-concentration biological nutrient removal
下载PDF
Effects of COD to Phosphorus Ratios on the Metabolism of PAOs in Enhanced Biological Phosphorus Removal with Different Carbon Sources 被引量:2
15
作者 Tao Jiang Junguo He +1 位作者 Xiaonan Yang Jianzheng Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期87-91,共5页
To elucidate the phosphorus removal and metabolism under various COD / P ratio,a sludge highly enriched in PAOs was used to investigate the impacts of COD / P in batch tests under different carbon supply conditions. A... To elucidate the phosphorus removal and metabolism under various COD / P ratio,a sludge highly enriched in PAOs was used to investigate the impacts of COD / P in batch tests under different carbon supply conditions. Acetate,propionate and a mixture of acetate and propionate at a ratio of 3 ∶ 1( COD basis) was used as carbon sources with the COD / P of 20,15,10 and 5. 0 g COD /gP,respectively. The minimum COD / P ratios for complete P removal were found to be 8. 24 g COD /gP for acetate,11. 40 g COD /gP for propionate and9. 10 g COD /gP for the 3 ∶ 1 mixture of acetate and propionate. Converted to a mass basis,all three cases had a very similar ratio of 7. 7 g VFA /gP,which represented a useful guide for operation of EBPR plants to identify possible shortages in VFAs. The trend in PHV accumulation during the anaerobic period along with the decrease of COD / P ratios suggested that,PAOs may use the TCA pathway for anaerobic VFA uptake to maintain the required NADH production with reduced glycogen degradation. During the aerobic phase,the glycogen pool was reduced but remained enough compared to the requirement for anaerobic VFA uptake,and the synthesis and degradation of glycogen was not the inhibition factor of PAOs. 展开更多
关键词 enhanced biological phosphorus removal COD / P ratio ACETATE GLYCOGEN
下载PDF
Removal of Pesticides from Water Using Anaerobic-Aerobic Biological Treatment 被引量:2
16
作者 Ahmad T.Shawaqfeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期672-680,共9页
The biodegradability of wastewater containing priority pollutant pesticideVydine or triadimenol(C14H18CLN3O2) in different bio-reactor configurations was investigated.Two laboratory scale biological reactors were em... The biodegradability of wastewater containing priority pollutant pesticideVydine or triadimenol(C14H18CLN3O2) in different bio-reactor configurations was investigated.Two laboratory scale biological reactors were employed:one reactor under aerobic condition and the other under anaerobic condition.The aerobic reactor was operated at an ambient temperature(22±2) °C,while the anaerobic reactor was run in the lower mesophilic range(30±2) °C.The effect of pesticide concentration,hydraulic retention time(HRT) ,and co-substrate on the treatment process was explored,using glucose as a supplemental carbon substrate.More than 96%pesticide was removed after an acclimation period of approximately 172 d(aerobic) and 230 d(anaerobic) .The aerobic reactor achieved complete Vydine utilization at feed concentrations up to 25 mg·L^-1 .On the other hand,the anaerobic reactor was able to degrade 25 mg·L^-1 of Vydine.Moreover,glucose was consumed first throughout the experiment in a sequential utilization pattern.The combination of anaerobic and aerobic biological processes yielded higher biomass concentration and lower retention time than individual units.The biomass in the combined reactors was first acclimated with the corresponding pesticide.Then,the target pesticide,at a concentration of 25 mg·L^-1,was sequentially treated in a semi batch mode in the reactors.HRT studies showed that 24 h HRT of aerobic and 12 h HRT of anaerobic were the optimum combination for the treatment of simulated wastewater containing Vydine,which produced Vydine effluent at concentration below 0.1 mg·L^-1 .The optimum ratio of substrate(Vydine) to co-substrate(glucose) was 1︰100. 展开更多
关键词 AEROBIC biological treatment PESTICIDE removal efficiency
下载PDF
Biological removal of methanol from process condensate for the purpose of reclamation 被引量:1
17
作者 WANGYan-ming YANGMin ZHANGYu GAOMeng-chun ZHANGJing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期384-386,共3页
The biological removal of methanol from condensate of ammonia manufacturing processes for the purpose of reclamation using contact type reactor was studied. Methanol of 60 mg/L was removed completely under an HRT of... The biological removal of methanol from condensate of ammonia manufacturing processes for the purpose of reclamation using contact type reactor was studied. Methanol of 60 mg/L was removed completely under an HRT of 1 12 h. Optimal inorganic nutrient dose was determined on evaluating methanol removal performance and dehydrogenase activities(DHA) under different nutrition doses. The optimal inorganic nutrient dose only gave an increase of conductivity of ca. 10 μs/cm 2 in the effluent on treating synthetic condensate containing methanol of 30 mg/L. The results demonstrated that biological removal of methanol was effective for the purpose of recovering the methanol bearing condensate. 展开更多
关键词 RECLAMATION CONDENSATE methanol removal biological contact reactor
下载PDF
Role of extracellular exopolymers on biological phosphorus removal 被引量:1
18
作者 LIU Ya-nan XUE Gang +1 位作者 YU Shui-li ZHAO Fang-bo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期670-674,共5页
Three sequencing batch reactors supplied with different carbon sources were investigated. The system supplied with glucose gained the best enhanced biological phosphorus removal although all of the three reactors were... Three sequencing batch reactors supplied with different carbon sources were investigated. The system supplied with glucose gained the best enhanced biological phosphorus removal although all of the three reactors were seeded from the same sludge. With the measurement of poly-β-hydroxyalkanoate (PHA) concentration, phosphorus content in sludge and extracellular exopolymers (EPS) with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS), it was found that the biosorption effect of EPS played an important role in phosphorus removal and that the amount of PHA at the end of anaerobic phase was not the only key factor to determine the following phosphorus removal efficiency. 展开更多
关键词 biological phosphorus removal extracellular exopolymers BIOSORPTION
下载PDF
Temporal Dynamics and Performance Association of the Tetrasphaera-Enriched Microbiome for Enhanced Biological Phosphorus Removal 被引量:2
19
作者 Hui Wang Yubo Wang +2 位作者 Guoqing Zhang Ze Zhao Feng Ju 《Engineering》 SCIE EI CAS CSCD 2023年第10期168-178,共11页
Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enha... Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater. 展开更多
关键词 Enhanced biological phosphorus removal(EBPR) Polyphosphate-accumulating organisms(PAOs) Tetrasphaera MICROBIOME Phosphorus recovery
下载PDF
Enhanced Biological Phosphorus Removal in Anaerobic/Aerobic Sequencing Batch Reactor Supplied with Glucose as Carbon Source 被引量:1
20
作者 刘亚男 于水利 +2 位作者 荆国林 赵冰洁 郭思远 《Journal of Donghua University(English Edition)》 EI CAS 2005年第3期95-99,共5页
Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storin... Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and 51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%. 展开更多
关键词 biological phosphorus removal GLUCOSE extracellular exopolymers BIOSORPTION
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部