Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a ...Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment,which mainly comprises excessive inflammation,deposition of inhibitory molecules,neurotrophic factor deprivation,glial scar formation,and imbalance of vascular function.To overcome this challenge,implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration,remyelination at injury site,and functional recovery after SCI.This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment,regulate inhibitory microenvironment,and reshape revascularization microenvironment.Moreover,technological limitations,challenges,and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed.This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo...Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.展开更多
Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,adva...Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects.展开更多
The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into...The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into the market/clinics.Bio-materials are easily processed to become similar to natural extracellular matrix,making them ideal temporary supports for mimicking the three-dimensional(3D)microenvironment required for maintaining the adequate cell/tissue functions both in vitro and in vivo^([1]).展开更多
In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted fu...In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted functionalities by leveraging the fundamental mechanics principles and force-geometry-property relationships.In the biological context,one may likewise introduce mechanobiomaterials as a field with the following goals:(1)proactive design or programming of materials for precisely mediating biomechanical environment of living systems for tissue repair/restoration;(2)proactive control/programming of living systems themselves by an external field via force-structure-function relationships.Here,we will discuss an example of research in mechanobiomaterials on using mechanics to guide the design of acellular epicardial patches for the treatment of myocardial infarction.This technology aims to employ a biocompatible material patch to help reverse left ventricular remodeling and restore heart function after myocardial infarction by increasing the mechanical integrity of damaged heart tissues.However,its application is currently limited by widely scattered therapeutic efficacy.Here,we develop a biomechanics-based simulation platform that allows us to test,design and optimize the performance of an epicardial patch.We show that the widely scattered therapeutic efficacy of this technology can be attributed to a“pre-strain sensitivity”caused by attaching an elastic patch to a dynamically beating heart.To mitigate this challenge,we introduce a viscoelastic epicardial patch,designed at the so-called‘gel point’of the material,that effectively accommodates the cyclic deformation of the myocardium.This then leads to the fabrication and experimentally validated epicardial patch that outperforms all existing ones in restoring heart function after both acute and subacute myocardial infarction in rats.Our study also demonstrates the potential of employing viscoelastic interfaces for better integration of synthetic materials with biological tissues.展开更多
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin’s own regenerative potential for self-healing,thereby avoiding the risks of immune rejection and exogeno...Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin’s own regenerative potential for self-healing,thereby avoiding the risks of immune rejection and exogenous infection.However,currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function,lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment.Novel biomimetic biomaterials with precise structure,chemical composition,and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration.Here,we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry,physiological process regulation,and biophysical property design.Furthermore,novel techniques including in situ reprograming,flexible electronic skin,artificial intelligence,single-cell sequencing,and spatial transcriptomics,which have potential to contribute to the development of biomimetic biomaterials are highlighted.Finally,the prospects and challenges of further research and application of biomimetic biomaterials are discussed.This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.展开更多
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas...Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.展开更多
Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including ...Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including bioactivity,renewability,bioresorbability,biocompatibility,biodegradability and hydrophilicity.Additive manufacturing(AM)is a flexible and intricate manufacturing technology,which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems.Three-dimensional(3D)printing of these sustainable materials is applied in functional clinical settings including wound dressing,drug delivery systems,medical implants and tissue engineering.The present review highlights recent advancements in different types of biopolymers,such as proteins and polysaccharides,which are employed to develop different biomedical products by using extrusion,vat polymerization,laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional(4D)bioprinting techniques.It also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds,and addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AMtechniques.Ideally,there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas.We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.展开更多
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essen...Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials.Previous studies have mainly focused on innate immune cells such as macrophages.In our previous work,we found that T lymphocytes,as adaptive immune cells,are also essential in the osteoinduction procedure.As the most important antigen-presenting cell,whether dendritic cells(DCs)can recognize non-antigen biomaterials and participate in osteoinduction was still unclear.In this study,we found that surgical trauma associated with materials implantation induces necrocytosis,and this causes the release of high mobility group protein-1(HMGB1),which is adsorbed on the surface of bone substitute materials.Subsequently,HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells,and the inflammatory response was activated.Finally,activated DCs release regeneration-related chemokines,recruit mesenchymal stem cells,and initiate the osteoinduction process.This study sheds light on the immune-regeneration process after bone substitute materials implantation,points out a potential direction for the development of bone substitute materials,and provides guidance for the development of clinical surgical methods.展开更多
Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great ...Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great importance in the synthesis of nanomaterials.The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi,algae,bacteria,and medicinal plants.They are also biodegradable,compatible with neighborhoods,and non-toxic.Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds,matrices,composites,and interpenetrating polymer networks employing microtechnology and nanotechnology.This review highlights how microengineered and nanoengineered biomaterials are utilized to produce efficient drug-delivery systems and biomedical and biological therapies and how innovative sources of biomaterials have been identified.展开更多
Osteoimmunomodulation is a fascinating approach for balancing osteoimmune through regulating reciprocal interactions between bone cells and immune cells[1].Implantation of the osteoimmunity-regulating biomaterials reg...Osteoimmunomodulation is a fascinating approach for balancing osteoimmune through regulating reciprocal interactions between bone cells and immune cells[1].Implantation of the osteoimmunity-regulating biomaterials regulates osteoimmune conditions in the host dynamically,thus intensifying osseointegration under physiological microenvironments[1].This perspective presents a brief overview of osteoimmunity-regulating biomaterials for augmenting bone regeneration based on a recently published study by our research team[2].展开更多
A novel class of aromatic polyimide-silicone segmented copolymer was synthesized with α, ω-bis (γ-aminopropyl) polydimethyldiphenylsiloxane (APMPS) as a silicone segment precursor, from which the segmented polyamic...A novel class of aromatic polyimide-silicone segmented copolymer was synthesized with α, ω-bis (γ-aminopropyl) polydimethyldiphenylsiloxane (APMPS) as a silicone segment precursor, from which the segmented polyamic acid-b-silicone intermediate could be prepared simply with DMF as solvent. The segmented copolymer displays microphase separation and exhibits improved antithrombogenicity, which depends mainly upon both the content level and the DP of the silicone segment. Thermal stability and mechanical property of the copolymer are between that of the aromatic polyimide and the silicone, and also relate to both the content level and the DP of the silicone segment.展开更多
In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases....In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases.Secondary surgical operation(s)usually become inevitable to prevent long term exposure of body with the toxic implant contents.The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals,alloys,and metallic glasses.As such,the nature of metallic biomaterials are transformed from the bioinert to bioactive and multi-biofunctional(anti-bacterial,anti-proliferation,anti-cancer,etc.).Magnesium-based biomaterials are candidates to be used as new generation biodegradable metals.Magnesium(Mg)can dissolve in body fluid that means the implanted Mg can degrade during healing process,and if the degradation is controlled it would leave no debris after the completion of healing.Hence,the need for secondary surgical operation(s)for the implant removal could be eliminated.Besides its biocompatibility,the inherent mechanical properties of Mg are very similar to those of human bone.Researchers have been working on synthesis and characterization of Mg-based biomaterials with a variety of composition in order to control the degradation rate of Mg since uncontrolled degradation could result in loss of mechanical integrity,metal contamination in the body and intolerable hydrogen evolution by tissue.It was observed that the applied methods of synthesis and the choice of components affect the characteristics and performance of the Mg-based biomaterials.Researchers have synthesized many Mg-based materials through several synthesis routes and investigated their mechanical properties,biocompatibility and degradation behavior through in vitro,in vivo and in silico studies.This paper is a comprehensive review that compiles,analyses and critically discusses the recent literature on the important aspects of Mg-based biomaterials.展开更多
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials ...Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.展开更多
Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in ...Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in bone reconstruction.We review the history of MBs and their excellent biocompatibility,biodegradability and osteopromotive properties,highlighting them as candidates for a new generation of biodegradable orthopedic implants.In particular,the results reported in the field-specific literature(280 articles)in recent decades are dissected with respect to the extensive variety of MBs for orthopedic applications,including Mg/Mg alloys,bioglasses,bioceramics,and polymer materials.We also summarize the osteogenic mechanism of MBs,including a detailed section on the physiological process,namely,the enhanced osteogenesis,promotion of osteoblast adhesion and motility,immunomodulation,and enhanced angiogenesis.Moreover,the merits and limitations of current bone grafts and substitutes are compared.The objective of this review is to reveal the strong potential of MBs for their use as agents in bone repair and regeneration and to highlight issues that impede their clinical translation.Finally,the development and challenges of MBs for transplanted orthopedic materials are discussed.展开更多
Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should...Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about thedifferent biomaterials used for the dental implants. This article makes an effort to summarize various dental biomaterials which were used in the past and as well as the latest material used now.展开更多
Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivit...Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivity to human skin,good antioxidant and antibacterial activities,electrically controlled drug delivery,and photothermal effect.However,a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking.In this review,the design and fabrication methods of conductive biomaterials with various structural forms including film,nanofiber,membrane,hydrogel,sponge,foam,and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized.The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies(electrotherapy,wound dressing,and wound assessment)were reviewed.The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound(infected wound and diabetic wound)and for wound monitoring is discussed in detail.The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.展开更多
The demand for biomaterials that promote the repair,replacement,or restoration of hard and soft tissues continues to grow as the population ages.Traditionally,smart biomaterials have been thought as those that respond...The demand for biomaterials that promote the repair,replacement,or restoration of hard and soft tissues continues to grow as the population ages.Traditionally,smart biomaterials have been thought as those that respond to stimuli.However,the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials.This review presents a redefinition of the term“Smart Biomaterial”and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration.To clarify the use of the term“smart biomaterials”,we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit,defining these materials as inert,active,responsive,and autonomous.Then,we present an up-to-date survey of applications of smart biomaterials for hard tissues,based on the materials’responses(external and internal stimuli)and their use as immune-modulatory biomaterials.Finally,we discuss the limitations and obstacles to the translation from basic research(bench)to clinical utilization that is required for the development of clinically relevant applications of these technologies.展开更多
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3808000/2022YFB3808001)the National Natural Science Foundation of China(Grant Nos.82301554,51903050 and 82104888)+1 种基金Scientific Research Foundation for the High-level Talents Fujian University of Traditional Chinese Medicine(X2021007talents,X2019011talents)School management project of Fujian University of traditional Chinese Medicine(X2023019).
文摘Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment,which mainly comprises excessive inflammation,deposition of inhibitory molecules,neurotrophic factor deprivation,glial scar formation,and imbalance of vascular function.To overcome this challenge,implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration,remyelination at injury site,and functional recovery after SCI.This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment,regulate inhibitory microenvironment,and reshape revascularization microenvironment.Moreover,technological limitations,challenges,and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed.This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
文摘Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
基金supported by the National Natural Science Foundation of China(Grant No.82202672)the Key Research and Development Program of Anhui Province(No.2022e07020017)+5 种基金China Postdoctoral Science Foundation Grant(2022M723049)the National Postdoctoral Program for Innovative Talents(BX20230350)Research Funds of Centre for Leading Medicine and Advanced Technologies of IHM(No.2023IHM02007)the Foundation of National Center for Translational Medicine(Shanghai)SHU Branch(No.SUITM-202301)Anhui Provincial Research Preparation Plan(2022AH040074),Natural science fund for colleges and universities in Anhui Proxince(2023AH053289)Research Fund of Anhui Institute of translational medicine(2022zhyx-C32).
文摘Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects.
基金the financial sup-port provided through the EU-funded ONCOSCREEN project(No.101097036).
文摘The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into the market/clinics.Bio-materials are easily processed to become similar to natural extracellular matrix,making them ideal temporary supports for mimicking the three-dimensional(3D)microenvironment required for maintaining the adequate cell/tissue functions both in vitro and in vivo^([1]).
文摘In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted functionalities by leveraging the fundamental mechanics principles and force-geometry-property relationships.In the biological context,one may likewise introduce mechanobiomaterials as a field with the following goals:(1)proactive design or programming of materials for precisely mediating biomechanical environment of living systems for tissue repair/restoration;(2)proactive control/programming of living systems themselves by an external field via force-structure-function relationships.Here,we will discuss an example of research in mechanobiomaterials on using mechanics to guide the design of acellular epicardial patches for the treatment of myocardial infarction.This technology aims to employ a biocompatible material patch to help reverse left ventricular remodeling and restore heart function after myocardial infarction by increasing the mechanical integrity of damaged heart tissues.However,its application is currently limited by widely scattered therapeutic efficacy.Here,we develop a biomechanics-based simulation platform that allows us to test,design and optimize the performance of an epicardial patch.We show that the widely scattered therapeutic efficacy of this technology can be attributed to a“pre-strain sensitivity”caused by attaching an elastic patch to a dynamically beating heart.To mitigate this challenge,we introduce a viscoelastic epicardial patch,designed at the so-called‘gel point’of the material,that effectively accommodates the cyclic deformation of the myocardium.This then leads to the fabrication and experimentally validated epicardial patch that outperforms all existing ones in restoring heart function after both acute and subacute myocardial infarction in rats.Our study also demonstrates the potential of employing viscoelastic interfaces for better integration of synthetic materials with biological tissues.
基金supported in part by the National Nature Science Foundation of China(92268206)the CAMS Innovation Fund for Medical Sciences(CIFMS,2019-I2M-5-059)+3 种基金the Military Medical Research Projects (2023-JSKY-SSQG-006)the National Key Research andDevelopment Program of China (2023YFC3011900)the Beijing NaturalScience Foundation (7232158)the Youth Autonomous InnovationScience Foundation of PLA general hospital (22QNFC019).
文摘Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin’s own regenerative potential for self-healing,thereby avoiding the risks of immune rejection and exogenous infection.However,currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function,lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment.Novel biomimetic biomaterials with precise structure,chemical composition,and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration.Here,we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry,physiological process regulation,and biophysical property design.Furthermore,novel techniques including in situ reprograming,flexible electronic skin,artificial intelligence,single-cell sequencing,and spatial transcriptomics,which have potential to contribute to the development of biomimetic biomaterials are highlighted.Finally,the prospects and challenges of further research and application of biomimetic biomaterials are discussed.This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
基金supported by the National Natural Science Foundation of China(52003113,31900950,82102334,82002313,82072444)the National Key Research&Development Program of China(2018YFC2001502,2018YFB1105705)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010745,2020A1515110356,2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190808120405672)the Key Program of the National Natural Science Foundation of Zhejiang Province(LZ22C100001)the Natural Science Foundation of Shanghai(20ZR1469800)the Integration Innovation Fund of Shanghai Jiao Tong University(2021JCPT03),the Science and Technology Projects of Guangzhou City(202102020359)the Zigong Key Science and Technology Plan(2022ZCNKY07).SXC thanks the financial support under the Startup Grant of the University of Chinese Academy of Sciences(WIUCASQD2021026).HW thanks the Futian Healthcare Research Project(FTWS2022013)the financial support of China Postdoctoral Science Foundation(2021TQ0118).SL thanks the financial support of China Postdoctoral Science Foundation(2022M721490).
文摘Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
文摘Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including bioactivity,renewability,bioresorbability,biocompatibility,biodegradability and hydrophilicity.Additive manufacturing(AM)is a flexible and intricate manufacturing technology,which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems.Three-dimensional(3D)printing of these sustainable materials is applied in functional clinical settings including wound dressing,drug delivery systems,medical implants and tissue engineering.The present review highlights recent advancements in different types of biopolymers,such as proteins and polysaccharides,which are employed to develop different biomedical products by using extrusion,vat polymerization,laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional(4D)bioprinting techniques.It also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds,and addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AMtechniques.Ideally,there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas.We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
基金supported by the Beijing Training Project for the Leading Talents in S&T(Grant No.Z191100006119022)the National Key Program of the National Natural Science Foundation of China(Grant No.51705006)Capital’s Funds for Health Improvement and Research(2022-2Z-4106).
文摘Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials.Previous studies have mainly focused on innate immune cells such as macrophages.In our previous work,we found that T lymphocytes,as adaptive immune cells,are also essential in the osteoinduction procedure.As the most important antigen-presenting cell,whether dendritic cells(DCs)can recognize non-antigen biomaterials and participate in osteoinduction was still unclear.In this study,we found that surgical trauma associated with materials implantation induces necrocytosis,and this causes the release of high mobility group protein-1(HMGB1),which is adsorbed on the surface of bone substitute materials.Subsequently,HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells,and the inflammatory response was activated.Finally,activated DCs release regeneration-related chemokines,recruit mesenchymal stem cells,and initiate the osteoinduction process.This study sheds light on the immune-regeneration process after bone substitute materials implantation,points out a potential direction for the development of bone substitute materials,and provides guidance for the development of clinical surgical methods.
文摘Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great importance in the synthesis of nanomaterials.The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi,algae,bacteria,and medicinal plants.They are also biodegradable,compatible with neighborhoods,and non-toxic.Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds,matrices,composites,and interpenetrating polymer networks employing microtechnology and nanotechnology.This review highlights how microengineered and nanoengineered biomaterials are utilized to produce efficient drug-delivery systems and biomedical and biological therapies and how innovative sources of biomaterials have been identified.
基金by the National Natural Science Foundation of China(Nos.52273158,U21A2099,52022095,52073280,51973216,51873207,and 51833010)the Science and Technology Development Program of Jilin Province(Nos.20210509005RQ,20210504001GH,and 20200404182YY)+1 种基金the Special Project for City−Academy Scientific and Technological Innovation Cooperation of Changchun(No.21SH14)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019230).
文摘Osteoimmunomodulation is a fascinating approach for balancing osteoimmune through regulating reciprocal interactions between bone cells and immune cells[1].Implantation of the osteoimmunity-regulating biomaterials regulates osteoimmune conditions in the host dynamically,thus intensifying osseointegration under physiological microenvironments[1].This perspective presents a brief overview of osteoimmunity-regulating biomaterials for augmenting bone regeneration based on a recently published study by our research team[2].
文摘A novel class of aromatic polyimide-silicone segmented copolymer was synthesized with α, ω-bis (γ-aminopropyl) polydimethyldiphenylsiloxane (APMPS) as a silicone segment precursor, from which the segmented polyamic acid-b-silicone intermediate could be prepared simply with DMF as solvent. The segmented copolymer displays microphase separation and exhibits improved antithrombogenicity, which depends mainly upon both the content level and the DP of the silicone segment. Thermal stability and mechanical property of the copolymer are between that of the aromatic polyimide and the silicone, and also relate to both the content level and the DP of the silicone segment.
文摘In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases.Secondary surgical operation(s)usually become inevitable to prevent long term exposure of body with the toxic implant contents.The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals,alloys,and metallic glasses.As such,the nature of metallic biomaterials are transformed from the bioinert to bioactive and multi-biofunctional(anti-bacterial,anti-proliferation,anti-cancer,etc.).Magnesium-based biomaterials are candidates to be used as new generation biodegradable metals.Magnesium(Mg)can dissolve in body fluid that means the implanted Mg can degrade during healing process,and if the degradation is controlled it would leave no debris after the completion of healing.Hence,the need for secondary surgical operation(s)for the implant removal could be eliminated.Besides its biocompatibility,the inherent mechanical properties of Mg are very similar to those of human bone.Researchers have been working on synthesis and characterization of Mg-based biomaterials with a variety of composition in order to control the degradation rate of Mg since uncontrolled degradation could result in loss of mechanical integrity,metal contamination in the body and intolerable hydrogen evolution by tissue.It was observed that the applied methods of synthesis and the choice of components affect the characteristics and performance of the Mg-based biomaterials.Researchers have synthesized many Mg-based materials through several synthesis routes and investigated their mechanical properties,biocompatibility and degradation behavior through in vitro,in vivo and in silico studies.This paper is a comprehensive review that compiles,analyses and critically discusses the recent literature on the important aspects of Mg-based biomaterials.
基金supported by the National Natural Science Foundation of China,No.81571213(to BW),No.81800583(to YYX)the 13~(th) Six Talent Peaks Project(C type)of Jiangsu Province of China(to BW)+1 种基金the Medical Science and Technique Development Foundation of Nanjing of China,No.QRX17006(to BW)the Medical Science and Innovation Platform of Nanjing of China,No.ZDX16005(to BW)
文摘Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.
基金financial support from the National Natural Science Foundation of China(No.81672230)the Natural Science Foundation of Chongqing(No.cstc2020jcyjmsxm2234)+1 种基金the Top-notch Young Talent Project of Chongqing Traditional Chinese Medicine Hospital(No.CQSZYY2020008)the Chongqing Graduate Research Innovation Project(No.CYS20199)。
文摘Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in bone reconstruction.We review the history of MBs and their excellent biocompatibility,biodegradability and osteopromotive properties,highlighting them as candidates for a new generation of biodegradable orthopedic implants.In particular,the results reported in the field-specific literature(280 articles)in recent decades are dissected with respect to the extensive variety of MBs for orthopedic applications,including Mg/Mg alloys,bioglasses,bioceramics,and polymer materials.We also summarize the osteogenic mechanism of MBs,including a detailed section on the physiological process,namely,the enhanced osteogenesis,promotion of osteoblast adhesion and motility,immunomodulation,and enhanced angiogenesis.Moreover,the merits and limitations of current bone grafts and substitutes are compared.The objective of this review is to reveal the strong potential of MBs for their use as agents in bone repair and regeneration and to highlight issues that impede their clinical translation.Finally,the development and challenges of MBs for transplanted orthopedic materials are discussed.
文摘Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about thedifferent biomaterials used for the dental implants. This article makes an effort to summarize various dental biomaterials which were used in the past and as well as the latest material used now.
基金jointly supported by the National Natural Science Foundation of China(Grant Numbers:51973172,and 51673155)the Natural Science Foundation of Shaanxi Province(No.2020JC-03 and 2019TD-020)+3 种基金State Key Laboratory for Mechanical Behavior of Materialsthe Fundamental Research Funds for the Central Universitiesthe World-Class Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central UniversitiesOpening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research,College of Stomatology,Xi’an Jiaotong University(No.2019LHM-KFKT008,and No.2021LHM-KFKT005).
文摘Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivity to human skin,good antioxidant and antibacterial activities,electrically controlled drug delivery,and photothermal effect.However,a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking.In this review,the design and fabrication methods of conductive biomaterials with various structural forms including film,nanofiber,membrane,hydrogel,sponge,foam,and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized.The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies(electrotherapy,wound dressing,and wound assessment)were reviewed.The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound(infected wound and diabetic wound)and for wound monitoring is discussed in detail.The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
基金support from a bridge grant from the Temple Office of the Vice President for Research(OVPR).
文摘The demand for biomaterials that promote the repair,replacement,or restoration of hard and soft tissues continues to grow as the population ages.Traditionally,smart biomaterials have been thought as those that respond to stimuli.However,the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials.This review presents a redefinition of the term“Smart Biomaterial”and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration.To clarify the use of the term“smart biomaterials”,we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit,defining these materials as inert,active,responsive,and autonomous.Then,we present an up-to-date survey of applications of smart biomaterials for hard tissues,based on the materials’responses(external and internal stimuli)and their use as immune-modulatory biomaterials.Finally,we discuss the limitations and obstacles to the translation from basic research(bench)to clinical utilization that is required for the development of clinically relevant applications of these technologies.