Graphical Electromagnetic Computing (GRECO) is recognized as one of the most valuable methods of the RCS (Radar Cross Section) computation for the high frequency region. The method of GRECO and Monostatic bistatic Equ...Graphical Electromagnetic Computing (GRECO) is recognized as one of the most valuable methods of the RCS (Radar Cross Section) computation for the high frequency region. The method of GRECO and Monostatic bistatic Equivalence Theorem was used to calculate the bistatic RCS for moving targets in the high frequency region. Some computing examples are given to verify the validity of the method. Excellent agreement with the measured data indicates that the method has practical engineering value.展开更多
Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
基金F oundation of National Key Laboratory of Electrom agnetic Environmental Research(0 0 js67.1.1.hk0 10 1)
文摘Graphical Electromagnetic Computing (GRECO) is recognized as one of the most valuable methods of the RCS (Radar Cross Section) computation for the high frequency region. The method of GRECO and Monostatic bistatic Equivalence Theorem was used to calculate the bistatic RCS for moving targets in the high frequency region. Some computing examples are given to verify the validity of the method. Excellent agreement with the measured data indicates that the method has practical engineering value.
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.