期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Oriented Bounding Box Object Detection Model Based on Improved YOLOv8
1
作者 ZHAO Xin-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期67-75,114,共10页
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ... In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes. 展开更多
关键词 Remote sensing image Oriented bounding boxes object detection Small target detection YOLOv8
下载PDF
Collision detection of virtual plant based on bounding volume hierarchy: A case study on virtual wheat 被引量:7
2
作者 TANG Liang SONG Wei-guo +3 位作者 HOU Tian-cheng LIU Lei-lei CAO Wei-xing ZHU Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期306-314,共9页
Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision ... Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision detection for improving vivid 3D visualizations of virtual wheat crops. First, the triangular data of leaves are generated with the tessellation of non-uniform rational B-splines surfaces. Second, the bounding volumes(BVs) and bounding volume hierarchies(BVHs) of leaves are constructed based on the leaf morphological characteristics and the collision detection of two leaves are performed using the Separating Axis Theorem. Third, the detecting effect of the above method is compared with the methods of traditional BVHs, Axis-Aligned Bounding Box(AABB) tree, and Oriented Bounding Box(OBB) tree. Finally, the BVs of other organs(ear, stem, and leaf sheath) in virtual wheat plant are constructed based on their geometric morphology, and the collision detections are conducted at the organ, individual and population scales. The results indicate that the collision detection method developed in this study can accurately detect collisions between organs, especially at the plant canopy level with high collision frequency. This collision detection-based virtual crop visualization method could reduce the phenomenon of organs cross-drawing effectively and enhance the reality of visualizations. 展开更多
关键词 wheat collision detection bounding volume hierarchy virtual plant morphology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部