Tassel branch number (TBN) is the principal component of maize tassel inflorescence architecture and is a typical quan- titative trait controlled by multiple genes. The main objective of this research was to detect ...Tassel branch number (TBN) is the principal component of maize tassel inflorescence architecture and is a typical quan- titative trait controlled by multiple genes. The main objective of this research was to detect quantitative trait loci (QTLs) for TBN. The maize inbred line SICAU1212 was used as the common parent to develop BC1S1 and recombinant inbred line (RIL) populations with inbred lines 3237 and B73, respectively. The two related populations consisted of 123 and 238 lines, respectively. Each population was grown and phenotyped for TBN in two environments. Eleven QTLs were detected in the BC1S1 population, located on chromosomes 2, 3, 5, and 7, accounted for 4.45-26.58% of the phenotypic variation. Two QTLs (qB11Jtbn2-1, qB12Ctbn2-1, qBJtbn2-1; q11JBtbn5-1, qB12Ctbn5-1, qBJtbn5-1) that accounted for more than 10% of the phenotypic variation were identified. Three QTLs located on chromosomes 2, 3 and 5, exhibited stable expres- sion in the two environments. Ten QTLs were detected in the RIL population, located on chromosomes 2, 3, 5, 8, and 10, accounted for 2.69-13.58% of the TBN variation. One QTL (qR14Dtbn2-2) explained 〉10% of the phenotypic variation. One common QTL (qB12Ctbn2-2, qR14Dtbn2-2, qRJtbn2-2) was detected between the two related populations. Three pairs of epistatic effects were identified between two loci with or without additive effects and accounted for 1.19-4.26% of the phenotypic variance. These results demonstrated that TBN variation was mainly caused by major effects, minor effects and slightly modified by epistatic effects. Thus, identification of QTL for TBN may help elucidate the genetic basis of TBN and also facilitate map-based cloning and marker-assisted selection (MAS) in maize breeding programs.展开更多
Flowering time and branching type are important agronomic traits related to the adaptability and yield of soybean. Molecular bases for major flowering time or maturity loci, E1 to E4, have been identified. However, mo...Flowering time and branching type are important agronomic traits related to the adaptability and yield of soybean. Molecular bases for major flowering time or maturity loci, E1 to E4, have been identified. However, more flowering time genes in cultivars with different genetic backgrounds are needed to be mapped and cloned for a better understanding of flowering time regulation in soybean. In this study, we developed a population of Japanese cultivar(Toyomusume)×Chinese cultivar(Suinong 10) to map novel quantitative trait locus(QTL) for flowering time and branch number. A genetic linkage map of a F_2 population was constructed using 1 306 polymorphic single nucleotide polymorphism(SNP) markers using Illumina Soy SNP8 ki Select Bead Chip containing 7 189(SNPs). Two major QTLs at E1 and E9, and two minor QTLs at a novel locus, qFT2_1 and at E3 region were mapped. Using other sets of F_2 populations and their derived progenies, the existence of a novel QTL of qFT2_1 was verified. qBR6_1, the major QTL for branch number was mapped to the proximate to the E1 gene, inferring that E1 gene or neighboring genetic factor is significantly contributing to the branch number.展开更多
Oilseed rape (Brassica napus L.) is one of the most important oil crops worldwide and provides about 50 percent of the vegetable oil supply in China (Yin et al., 2009). The development of rapeseed varieties with h...Oilseed rape (Brassica napus L.) is one of the most important oil crops worldwide and provides about 50 percent of the vegetable oil supply in China (Yin et al., 2009). The development of rapeseed varieties with higher yield is an effective measure to optimize balance between the supply and demand of edible vegetable oil. In oilseed rape, the number of silique per plant (SP) contributes most to the yield performance (Diepenbrock, 2000). However, compared with the other two yield-component traits, seeds per silique (SS) and seed weight (SW), SP is more sensitive to environmental changes (Li et al., 2007; Shi et al., 2009). Therefore, it is difficult to perform the genetic improvement on SP trait directly in oilseed rape.展开更多
角是反刍动物有别于其他动物的明显特征(Wang et al.,2019)。与牛科动物、羊科动物的洞角不同,鹿角为实心骨质、可年度周期性脱落、其分枝和重量受到众多因素的影响,是鹿类保护、养殖、育种领域关注的焦点问题(Bowyer,1991)。幼鹿每增长...角是反刍动物有别于其他动物的明显特征(Wang et al.,2019)。与牛科动物、羊科动物的洞角不同,鹿角为实心骨质、可年度周期性脱落、其分枝和重量受到众多因素的影响,是鹿类保护、养殖、育种领域关注的焦点问题(Bowyer,1991)。幼鹿每增长1岁,角增加1个分枝;角直径和重量也随之增加(夏志强等,2023);同一年龄组同一个体的不同阶段,茸生长速度和重量增加也不相同(Hassanin et al.,2012;李春义,2017;夏志强等,2023);鹿茸软骨与机体其他软骨组织不同,内有血管(鲍加荣等,2008;Chen et al.,2019),可供给茸生长所需的营养(Clements et al.,2010;Lin et al.,2019);血管内皮生长因子(Vascular endotheli‐al growth factor,VEGF)的含量变化对鹿茸的生长速度、茸直径、分枝数、分枝方向及角重和形态发育有重要影响(Clark et al.,2006)。展开更多
In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using th...In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.展开更多
基金the National Basic Research Program of China(the 973 Project,2014CB138203)the State Key Laboratory of Grassland Agro-ecosytems,China(SKLGAE201509)the National Natural Science Foundation of China(31101161)
文摘Tassel branch number (TBN) is the principal component of maize tassel inflorescence architecture and is a typical quan- titative trait controlled by multiple genes. The main objective of this research was to detect quantitative trait loci (QTLs) for TBN. The maize inbred line SICAU1212 was used as the common parent to develop BC1S1 and recombinant inbred line (RIL) populations with inbred lines 3237 and B73, respectively. The two related populations consisted of 123 and 238 lines, respectively. Each population was grown and phenotyped for TBN in two environments. Eleven QTLs were detected in the BC1S1 population, located on chromosomes 2, 3, 5, and 7, accounted for 4.45-26.58% of the phenotypic variation. Two QTLs (qB11Jtbn2-1, qB12Ctbn2-1, qBJtbn2-1; q11JBtbn5-1, qB12Ctbn5-1, qBJtbn5-1) that accounted for more than 10% of the phenotypic variation were identified. Three QTLs located on chromosomes 2, 3 and 5, exhibited stable expres- sion in the two environments. Ten QTLs were detected in the RIL population, located on chromosomes 2, 3, 5, 8, and 10, accounted for 2.69-13.58% of the TBN variation. One QTL (qR14Dtbn2-2) explained 〉10% of the phenotypic variation. One common QTL (qB12Ctbn2-2, qR14Dtbn2-2, qRJtbn2-2) was detected between the two related populations. Three pairs of epistatic effects were identified between two loci with or without additive effects and accounted for 1.19-4.26% of the phenotypic variance. These results demonstrated that TBN variation was mainly caused by major effects, minor effects and slightly modified by epistatic effects. Thus, identification of QTL for TBN may help elucidate the genetic basis of TBN and also facilitate map-based cloning and marker-assisted selection (MAS) in maize breeding programs.
基金supported by the National Key Research and Development Program of China(2016YFD0100201 and 2016YFD0101902)the Knowledge Innovation Project of Chinese Academy of Sciences(XDA08010105)the National Natural Science Foundation of China(31471518 and 31301338)
文摘Flowering time and branching type are important agronomic traits related to the adaptability and yield of soybean. Molecular bases for major flowering time or maturity loci, E1 to E4, have been identified. However, more flowering time genes in cultivars with different genetic backgrounds are needed to be mapped and cloned for a better understanding of flowering time regulation in soybean. In this study, we developed a population of Japanese cultivar(Toyomusume)×Chinese cultivar(Suinong 10) to map novel quantitative trait locus(QTL) for flowering time and branch number. A genetic linkage map of a F_2 population was constructed using 1 306 polymorphic single nucleotide polymorphism(SNP) markers using Illumina Soy SNP8 ki Select Bead Chip containing 7 189(SNPs). Two major QTLs at E1 and E9, and two minor QTLs at a novel locus, qFT2_1 and at E3 region were mapped. Using other sets of F_2 populations and their derived progenies, the existence of a novel QTL of qFT2_1 was verified. qBR6_1, the major QTL for branch number was mapped to the proximate to the E1 gene, inferring that E1 gene or neighboring genetic factor is significantly contributing to the branch number.
基金supported by the Hi-Tech Research and Development program of China (Grant No. 2011AA10A104)the National Natural Science Foundation of China (Grant Nos. 31171589 and 31201244)+1 种基金the National Basic Research Program (Grant No. 2011CB109302)the Special Fund for Agroscientific Research in the Public Interest (Grant No. 2101203032)
文摘Oilseed rape (Brassica napus L.) is one of the most important oil crops worldwide and provides about 50 percent of the vegetable oil supply in China (Yin et al., 2009). The development of rapeseed varieties with higher yield is an effective measure to optimize balance between the supply and demand of edible vegetable oil. In oilseed rape, the number of silique per plant (SP) contributes most to the yield performance (Diepenbrock, 2000). However, compared with the other two yield-component traits, seeds per silique (SS) and seed weight (SW), SP is more sensitive to environmental changes (Li et al., 2007; Shi et al., 2009). Therefore, it is difficult to perform the genetic improvement on SP trait directly in oilseed rape.
文摘角是反刍动物有别于其他动物的明显特征(Wang et al.,2019)。与牛科动物、羊科动物的洞角不同,鹿角为实心骨质、可年度周期性脱落、其分枝和重量受到众多因素的影响,是鹿类保护、养殖、育种领域关注的焦点问题(Bowyer,1991)。幼鹿每增长1岁,角增加1个分枝;角直径和重量也随之增加(夏志强等,2023);同一年龄组同一个体的不同阶段,茸生长速度和重量增加也不相同(Hassanin et al.,2012;李春义,2017;夏志强等,2023);鹿茸软骨与机体其他软骨组织不同,内有血管(鲍加荣等,2008;Chen et al.,2019),可供给茸生长所需的营养(Clements et al.,2010;Lin et al.,2019);血管内皮生长因子(Vascular endotheli‐al growth factor,VEGF)的含量变化对鹿茸的生长速度、茸直径、分枝数、分枝方向及角重和形态发育有重要影响(Clark et al.,2006)。
文摘In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.