By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM...By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM and XPS confirm that the expected sample was produced.GITT results show that the lithium-ion diffusion coefficient of Nb_(18)W_(16)O_(93)(10−12 cm^(2)/s)is higher than that of the conventional titanium-based anode,ensuring a relatively superior electrochemical performance.The lithium-ion diffusion mechanism was thoroughly revealed by using density functional theory simulation.There are three diffusion paths in TTB phase,among which the interlayer diffusion with the smallest diffusion barrier(0.46 eV)has more advantages than other typical anodes(such as graphite,0.56 eV).The relatively smaller lithium-ion diffusion barrier makes TTB phase Nb_(18)W_(16)O_(93)become a potential highspecific-power anode material.展开更多
Bronze phase TiO_(2)[TiO_(2)(B)]has great research potential for sodium storage since it has a higher theoretical capacity and ion mobility compared with other phases of TiO_(2).In this case,preparing porous TiO_(2)(B...Bronze phase TiO_(2)[TiO_(2)(B)]has great research potential for sodium storage since it has a higher theoretical capacity and ion mobility compared with other phases of TiO_(2).In this case,preparing porous TiO_(2)(B)nanosheets,which can provide abundant sodium insertion channels,is the most effective way to improve transport kinetics.Here,we use the strong one-dimensional TiO_(2)nanowires as the matrix for stringing these nanosheets together through a simple solvothermal method to build a bunchy hierarchical structure[TiO_(2)(B)-BH],which has fast pseudocapacitance behavior,high structural stability,and effective ion/electron transport.With the superiorities of this structure design,TiO_(2)(B)-BH has a higher capacity(131 vs.70 mAh g^(−1)[TiO_(2)-NWs]at 0.5 C).And it is worth mentioning that the reversible capacity of up to 500 cycles can still be maintained at 85 mAh g^(−1)at a high rate of 10 C.Meanwhile,we also further analyzed the sodium storage mechanism through the ex-situ X-ray powder diffraction test,which proved the high structural stability of TiO_(2)(B)-BH in the process of sodiumization/de-sodiumization.This strategy of uniformly integrating nanosheets into a matrix can also be extended to preparing electrode material structures of other energy devices.展开更多
Barium strontium titanate niobate (BSTN) composite ceramics system following the general formula 0.5BaO·0.5SrO·0.5TiO2·0.5Nb2O6 was successfully prepared. The investigation is carried out through a modi...Barium strontium titanate niobate (BSTN) composite ceramics system following the general formula 0.5BaO·0.5SrO·0.5TiO2·0.5Nb2O6 was successfully prepared. The investigation is carried out through a modified sol-gel method. By controlling the viscosity of the sol solution to suspend the strontium barium niobate ceramic powder uniformly which had been made beforehand and the viscosity of the sol could be changed by adjusting the mixture ratio of the precursor. Powders obtained from dried gels were calcined at 800 ℃ for 3 h. The bulk ceramics obtained from the dried powders were sintered at the temperatures of 1250 and 1300 ℃ respectively. The results of the XRD and SEM indicated that the perovskite phase and the tungsten bronze phase could be coexisted stably in BSTN at both of these temperatures. The increasing of the sintering temperature was good for the crystal phase growing and the solubility of the two phases in the composite ceramics. And the theory of adulteration could be adopted to resolve the phenomena that sintering temperatures too high, which resulted in the crystalline grains growing singularly. Some problems were put forward to pay attention to this material research process.展开更多
Strontium barium niobate/barium strontium titanate composite ceramics of xSrO·(1-x)BaO·0.5Nb2O5·0.5TiO2 (BSTN in short) with a range of Sr/Ba ratios were fabricated using a modified sol-gel method with ...Strontium barium niobate/barium strontium titanate composite ceramics of xSrO·(1-x)BaO·0.5Nb2O5·0.5TiO2 (BSTN in short) with a range of Sr/Ba ratios were fabricated using a modified sol-gel method with Nb2O5 fine powders suspended in the barium strontium titanate (BST in short) sol solution. Powders obtained from dried gels were calcined at 800 ℃ for 3 h. After preparing bulk ceramics from these powders by sintering at 1200 ℃ for 3 h, the tetragonal tungsten bronze(TTB) phase and perivoskite phase were co-present in compositions between 0.25≤x≤0.75, with the increasing of x value, the peaks of pervoskite phase shift to the high angle position slightly while no changes happened in the peak position of TTB phase. The peak intensity of both two phases were also changed.展开更多
基金the Key R&D Program of Shaanxi Province,China(No.2019ZDLGY04-05)the Natural Science Foundation of Shaanxi Province,China(No.2019JLZ-01)+1 种基金the Fundamental Research Funds for the Central Universities of China(Nos.19GH020302,3102019JC005,3102021ZD0401,3102021TS0406)the Science,Technology,and Innovation Commission of Shenzhen Municipality,China(No.JCYJ20180508151856806).
文摘By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM and XPS confirm that the expected sample was produced.GITT results show that the lithium-ion diffusion coefficient of Nb_(18)W_(16)O_(93)(10−12 cm^(2)/s)is higher than that of the conventional titanium-based anode,ensuring a relatively superior electrochemical performance.The lithium-ion diffusion mechanism was thoroughly revealed by using density functional theory simulation.There are three diffusion paths in TTB phase,among which the interlayer diffusion with the smallest diffusion barrier(0.46 eV)has more advantages than other typical anodes(such as graphite,0.56 eV).The relatively smaller lithium-ion diffusion barrier makes TTB phase Nb_(18)W_(16)O_(93)become a potential highspecific-power anode material.
基金the Natural Science Foundation of Beijing Municipality(L172036)Joint Funds of the Equipment Pre-Research and Ministry of Education(6141A020225)+1 种基金Par-Eu Scholars Program,Science and Technology Beijing 100 Leading Talent Training Project,the Fundamental Research Funds for the Central Universities(2020FR002,2020MS023,2020MS028,2021MS028)the NCEPU"Double First-Class"Program,the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(LAPS21004).
文摘Bronze phase TiO_(2)[TiO_(2)(B)]has great research potential for sodium storage since it has a higher theoretical capacity and ion mobility compared with other phases of TiO_(2).In this case,preparing porous TiO_(2)(B)nanosheets,which can provide abundant sodium insertion channels,is the most effective way to improve transport kinetics.Here,we use the strong one-dimensional TiO_(2)nanowires as the matrix for stringing these nanosheets together through a simple solvothermal method to build a bunchy hierarchical structure[TiO_(2)(B)-BH],which has fast pseudocapacitance behavior,high structural stability,and effective ion/electron transport.With the superiorities of this structure design,TiO_(2)(B)-BH has a higher capacity(131 vs.70 mAh g^(−1)[TiO_(2)-NWs]at 0.5 C).And it is worth mentioning that the reversible capacity of up to 500 cycles can still be maintained at 85 mAh g^(−1)at a high rate of 10 C.Meanwhile,we also further analyzed the sodium storage mechanism through the ex-situ X-ray powder diffraction test,which proved the high structural stability of TiO_(2)(B)-BH in the process of sodiumization/de-sodiumization.This strategy of uniformly integrating nanosheets into a matrix can also be extended to preparing electrode material structures of other energy devices.
文摘Barium strontium titanate niobate (BSTN) composite ceramics system following the general formula 0.5BaO·0.5SrO·0.5TiO2·0.5Nb2O6 was successfully prepared. The investigation is carried out through a modified sol-gel method. By controlling the viscosity of the sol solution to suspend the strontium barium niobate ceramic powder uniformly which had been made beforehand and the viscosity of the sol could be changed by adjusting the mixture ratio of the precursor. Powders obtained from dried gels were calcined at 800 ℃ for 3 h. The bulk ceramics obtained from the dried powders were sintered at the temperatures of 1250 and 1300 ℃ respectively. The results of the XRD and SEM indicated that the perovskite phase and the tungsten bronze phase could be coexisted stably in BSTN at both of these temperatures. The increasing of the sintering temperature was good for the crystal phase growing and the solubility of the two phases in the composite ceramics. And the theory of adulteration could be adopted to resolve the phenomena that sintering temperatures too high, which resulted in the crystalline grains growing singularly. Some problems were put forward to pay attention to this material research process.
文摘Strontium barium niobate/barium strontium titanate composite ceramics of xSrO·(1-x)BaO·0.5Nb2O5·0.5TiO2 (BSTN in short) with a range of Sr/Ba ratios were fabricated using a modified sol-gel method with Nb2O5 fine powders suspended in the barium strontium titanate (BST in short) sol solution. Powders obtained from dried gels were calcined at 800 ℃ for 3 h. After preparing bulk ceramics from these powders by sintering at 1200 ℃ for 3 h, the tetragonal tungsten bronze(TTB) phase and perivoskite phase were co-present in compositions between 0.25≤x≤0.75, with the increasing of x value, the peaks of pervoskite phase shift to the high angle position slightly while no changes happened in the peak position of TTB phase. The peak intensity of both two phases were also changed.