期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Mechanical stirring for highly efficient gas injection refining 被引量:5
1
作者 刘燕 张廷安 +3 位作者 佐野正道 王强 任晓冬 赫冀成 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1896-1904,共9页
In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a wat... In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation. 展开更多
关键词 gas injection refining eccentric mechanical stirring unidirectional impeller rotation bubble dispersion bubble disintegration macroscopic flow
下载PDF
Enhancement of ultrasonic disintegration of sewage sludge by aeration 被引量:1
2
作者 He Zhao Panyue Zhang +1 位作者 Guangming Zhang Rong Cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期163-167,共5页
Sonication is an effective way for sludge disintegration,which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge.But high energy consumption limits the wide applicatio... Sonication is an effective way for sludge disintegration,which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge.But high energy consumption limits the wide application of sonication.In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption,aeration was introduced.Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound.The aeration flow rate,gas bubble size,ultrasonic density and aeration timing had impacts on sludge disintegration efficiency.Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate,small gas bubbles significantly improved ultrasonic disintegration sludge efficiency.At the optimal conditions of 0.4 W/m L ultrasonic irradiation density,30 m L/min of aeration flow rate,5 min of aeration in later stage and small gas bubbles,ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved.This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. 展开更多
关键词 Aeration Ultrasonic sludge disintegration Gas bubble size Ultrasonic irradiation density Ultrasonic irradiation stages
原文传递
Cold Model Study on Mg Desulfurization of Hot Metal Under Mechanical Stirring 被引量:5
3
作者 LIU Yan ZHANG Zi-mu +3 位作者 LIU Jian-nan ZHANG Jun-hua Masamichi Sano ZHANG Jun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第12期1-6,共6页
The new method of in-situ desulfurization with mechanical stirring of new type impellers was introduced, in which the bubble's dispersion and disintegration of magnesium vapor were the key to boosting the desulfuriza... The new method of in-situ desulfurization with mechanical stirring of new type impellers was introduced, in which the bubble's dispersion and disintegration of magnesium vapor were the key to boosting the desulfurization efficiency and increasing the utilization rate of magnesium. Effects of different new type of impellers on bubble dis persion and disintegration were studied through bubble image analysis, gas-liquid mass transfer, and power con- sumption levels of different impeller structures. The results showed that the sloped swept-back blade impeller-2 pro- duces optimal bubble's dispersion and disintegration, as well as higher volumetric mass transfer coefficient and CO2 gas utilization while consuming the least power. Numerical simulation result with Fluent software also showed that the sloped swept-back blade impeller-2 has higher turbulent kinetic energy and better velocity distribution than the other two impellers. 展开更多
关键词 gas injection refining eccentric mechanical stirring bubble disintegration bubble dispersion volumetric mass transfer coefficient Mg desulfurization hot metal
原文传递
Study on Absorption Rate by Eccentric Mechanical Stirring in Gas Injection Refining for Iron and Steel Making 被引量:5
4
作者 MASAMICHI Sano 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期166-171,共6页
In gas injection refining processes, a great amount of gas is injected into molten metal in short time, so that very large bubbles are inevitably formed. Wide dispersion of small bubbles in the bath is indispensable f... In gas injection refining processes, a great amount of gas is injected into molten metal in short time, so that very large bubbles are inevitably formed. Wide dispersion of small bubbles in the bath is indispensable for high refining efficiency. Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion. Absorption rate are used to research on the influence law of the bubble dispersion and disintegration and gas-liquid absorption by the influence of, rotation mode, rotation speed and gas flow rate. Compared to the experimental results of absorption rate under eccentric stirring and centric stirring ,provide the scientific experimental and theoretical guidance for high-temperature experiment of hot metal desulfurization .According to experimental and theoretical analysis, this paper has studied various factors effecting on gas absorption process and volumetric mass transfer coefficient using the system of CO2-NaOH-H2O.The results show that:the volumetric mass transfer coefficient and absorption efficiency of CO2 can be increased under eccentric stirring mode, Because bubble disperse quickly with eccentric mechanical stirring, which results in promoting complete reaction between CO2 and NaOH, and improving the mass transfer coefficient and absorption. Volumetric mass transfer coefficient and efficiency of CO2 increase with the increasing rotation speed under the condition of eccentric stirring .But volumetric mass transfer coefficient and efficiency of CO2 decrease with the increasing rotation speed under the condition of centric stirring. 展开更多
关键词 eccentric stirring bubble dispersion bubble disintegration volumetric mass transfer coefficient efficiency of CO2
原文传递
Improvement of Impeller Blade Structure for Gas Injection Refining under Mechanical Stirring 被引量:4
5
作者 Yan LIU Zi-mu ZHANG +3 位作者 Sano MASAMICHI Jun ZHANG Pin SHAO Ting-an ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期135-143,共9页
Abstract: The impeller blade structure for gas injection refining under mechanical stirring has been explored by water model experiments. A sloped swept-back blade impeller is'proposed for the purpose. The central p... Abstract: The impeller blade structure for gas injection refining under mechanical stirring has been explored by water model experiments. A sloped swept-back blade impeller is'proposed for the purpose. The central part of the impeller is disk- or plate-shaped, and the blades are fitted to the side of the disk or plate. In addition, a disk is put on the top side of the impeller blades. The impeller can strengthen the radial and downward flow between the blades and weaken the swirl flow in the zone above the impeller. These effects on flow phenomena are favorable for disintegration and wide dispersion of bubbles which are injected from a nozzle attached to the center of the underside of the impeller. In addition, the sloped swept-back impeller requires less power consumption. The impeller shaft should be placed away from the vessel center so as to disperse the injected bubbles widely in the bath under mechanical stirring even with unidi- rectional impeller rotation and without installing baffles. The number of gas holes in the nozzle and the direction of gas injection have a little effect on the bubble disintegration and dispersion in the bath. Highly efficient gas injection refining can be established under the conditions of proper impeller size, larger nozzle immersion depth, larger eccen- tricity and rotation speed of the impeller. The sloped swept back blade impeller can decrease the power consumption and vet improve the bubble disintegration and wide dist^ersion in the bath. 展开更多
关键词 gas injection refining cold model eccentric mechanical stirring impeller structure power consump-tion bubble disintegration bubble dispersion
原文传递
Experimental Research of External Desulfurization in Situ Mechanical Stirring 被引量:2
6
作者 MASAMICHI Sano 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期119-124,共6页
This paper presents a new idea about desulfurization with in-situ mechanical stirring method on the basis of desulfurization by single blow grain magnesium and KR method, that is, the inner gases carry the magnesium v... This paper presents a new idea about desulfurization with in-situ mechanical stirring method on the basis of desulfurization by single blow grain magnesium and KR method, that is, the inner gases carry the magnesium vapor formed in-site in molten iron by magnesium-based desulfurization, and bubble dispersed and disintegrated under the condition of mechanical stirring, thence to improve the efficiency of desulfurization by single blow grain magnesium .It has been proved by research of cold water model experiment that the bubble dispersion and disintegration can not only improve the desulphurization efficiency but also increase the utilization rate of magnesium. Obviously, the bubble dispersion and disintegration of magnesium vapor is the key problem in improving the desulphurization efficiency and increasing the utilization rate of magnesium. Thus the research focus on exploring the performance of bubble dispersion and disintegration on the base of refining process and gas-liquid mass transfer. According to the literature and cold water model experimental result basing on principle of similitude, the influencing factors and interaction of bubble dispersion and disintegration have been studied from the perspectives of physical and numerical simulation. The study would provide the theoretical and experimental data for the new method of desulfurization with in-situ mechanical stirring. 展开更多
关键词 in-situ mechanical stirring method magnesium-based desulfurization bubble disintegration and dispersion injection refining water model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部