GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light cur...GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.展开更多
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a com...The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.展开更多
Drilling pressure relief is one of the methods to reduce the risk of coal bursts in deep mines.However,the effect of the drill hole orientations has not been studied well enough to understand their impact on the burst...Drilling pressure relief is one of the methods to reduce the risk of coal bursts in deep mines.However,the effect of the drill hole orientations has not been studied well enough to understand their impact on the burst failure mechanism.In this study,we investigated two designs of drill hole orientations.The first design includes drill holes located on the upper free face of the rectangular samples and labelled as upper hole(UH)and centre hole(CH)e the long axes of the drill holes are aligned with minor principal stress,s3,direction.The second design includes drill holes at the top(TH)and the side(SH)of the rectangular samples in which the long axes of the drill holes are aligned with the maximum,s1,and intermediate principal stress,s2,directions,respectively.The coal samples with the proposed drill hole orientations were subjected to the true-triaxial unloading coal burst tests.The results show that the drill holes reduce the risk of coal bursts.However,we found that the intensity of coal burst was significantly reduced with the SH-type,followed by the CH-types.We also observed that the coal burst intensity is reduced better for the CH,UH,TH,and SH-type drilling patterns.However,it was found that the orientations of drill holes have little influence on the failure mode(splitting).The acoustic emission(AE)activities for coal with drill holes noticeably decreased,especially for the UH and CH layouts.The drill holes reduced the upper limit of the AE entropy(chaos of microcracks generation).However,regarding reducing the coal burst risk,the TH and SH are less effective than UH and CH.展开更多
In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width a...In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.展开更多
The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-...The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.展开更多
Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of c...Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering.展开更多
Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid ...Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock,leading to severe seismic events and structural damage.Therefore,the development of reliable prediction models for rock bursts is paramount to mitigating these hazards.This study aims to propose a tree-based model—a Light Gradient Boosting Machine(LightGBM)—to predict the intensity of rock bursts in underground engineering.322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset,which serves to train the LightGBMmodel.Two population-basedmetaheuristic algorithms are used to optimize the hyperparameters of the LightGBM model.Finally,the sensitivity analysis is used to identify the predominant factors that may incur the occurrence of rock bursts.The results show that the population-based metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.The developed LightGBM model yields promising performance in predicting the intensity of rock bursts,with which accuracy on training and testing sets are 0.972 and 0.944,respectively.The sensitivity analysis discloses that the risk of occurring rock burst is significantly sensitive to three factors:uniaxial compressive strength(σc),stress concentration factor(SCF),and elastic strain energy index(Wet).Moreover,this study clarifies the particular impact of these three factors on the intensity of rock bursts through the partial dependence plot.展开更多
Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method tha...Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce th...Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce the real-time burst alert system of GECAM,with the adoption of the BeiDou-3 short message communication service.We present the post-trigger operations,the detailed ground-based analysis,and the performance of the system.In the first year of the in-flight operation,GECAM was triggered by 42 gamma-ray bursts.The GECAM real-time burst alert system has the ability to distribute the alert within~1 minute after being triggered,which enables timely follow-up observations.展开更多
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the con...GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.展开更多
This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause ...This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.展开更多
For the practical use of femtosecond laser ablation, inputs of higher laser intensity are preferred to attain high-throughput material removal. However, the use of higher laser intensities for increasing ablation rate...For the practical use of femtosecond laser ablation, inputs of higher laser intensity are preferred to attain high-throughput material removal. However, the use of higher laser intensities for increasing ablation rates can have detrimental effects on ablation quality due to excess heat generation and air ionization. This paper employs ablation using BiBurst femtosecond laser pulses, which consist of multiple bursts(2 and 5 bursts) at a repetition rate of 64 MHz, each containing multiple intra-pulses(2–20 pulses) at an ultrafast repetition rate of 4.88 GHz, to overcome these conflicting conditions. Ablation of silicon substrates using the BiBurst mode with 5 burst pulses and 20 intra-pulses successfully prevents air breakdown at packet energies higher than the pulse energy inducing the air ionization by the conventional femtosecond laser pulse irradiation(single-pulse mode). As a result, ablation speed can be enhanced by a factor of23 without deteriorating the ablation quality compared to that by the single-pulse mode ablation under the conditions where the air ionization is avoided.展开更多
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno...Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.展开更多
As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an a...As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an active period in 2020 are published,including the duration and net photon counts of each burst,and waiting time based on the trigger time difference.In this paper,we utilize the power-law model,dN(x)/dx∝(x+x_0)~((-α)_x),to fit the cumulative distributions of these parameters.It can be found that all the cumulative distributions can be well fitted,which can be interpreted by a self-organizing criticality theory.Furthermore,we check whether this phenomenon still exists in different energy bands and find that there is no obvious evolution.These findings further confirm that the X-ray bursts from magnetars are likely to be generated by some self-organizing critical process,which can be explained by a possible magnetic reconnection scenario in magnetars.展开更多
It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of th...It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of the prompt emission of this gamma-ray burst(GRB).The observed time delay between the merger of the two NSs and the trigger of the GRB and the thermal tail of the prompt emission can hardly be reproduced by these models simultaneously.We argue that the merger remnant should be an NS(last for,at least,a large fraction of 1 s),and that the difficulty can be alleviated by the delayed formation of the accretion disk due to the absorption of high-energy neutrinos emitted by the NS and the delayed emergence of effective viscosity in the disk.Further,we extend the consideration of the effect of the energy deposition of neutrinos emitted from the NS.If the NS is the central object of a GRB with a distance and duration similar to that of GRB 170817A,thermal emission of the thermal bubble inflated by the NS after the termination of accretion may be detectable.If our scenario is verified,it would be of interest to investigate the cooling of nascent NSs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1938201 and 12373042)。
文摘GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550400)the Key Research Program of Frontier Sciences(grant No.ZDBS-LY-7014)of Chinese Academy of Sciences+1 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.12373053 and 12321003)the Natural Science Foundation of Jiangsu Province(grant No.BK20221562)。
文摘The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.
基金financial support from the Australian Coal Association Research Program(ACARPdC27020-Extension)the China Scholarship Council.
文摘Drilling pressure relief is one of the methods to reduce the risk of coal bursts in deep mines.However,the effect of the drill hole orientations has not been studied well enough to understand their impact on the burst failure mechanism.In this study,we investigated two designs of drill hole orientations.The first design includes drill holes located on the upper free face of the rectangular samples and labelled as upper hole(UH)and centre hole(CH)e the long axes of the drill holes are aligned with minor principal stress,s3,direction.The second design includes drill holes at the top(TH)and the side(SH)of the rectangular samples in which the long axes of the drill holes are aligned with the maximum,s1,and intermediate principal stress,s2,directions,respectively.The coal samples with the proposed drill hole orientations were subjected to the true-triaxial unloading coal burst tests.The results show that the drill holes reduce the risk of coal bursts.However,we found that the intensity of coal burst was significantly reduced with the SH-type,followed by the CH-types.We also observed that the coal burst intensity is reduced better for the CH,UH,TH,and SH-type drilling patterns.However,it was found that the orientations of drill holes have little influence on the failure mode(splitting).The acoustic emission(AE)activities for coal with drill holes noticeably decreased,especially for the UH and CH layouts.The drill holes reduced the upper limit of the AE entropy(chaos of microcracks generation).However,regarding reducing the coal burst risk,the TH and SH are less effective than UH and CH.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12163007,11763009)。
文摘In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.
基金performed under the auspices of the Science and Technology Foundation of Guizhou Province(grant No.Qian Ke He Ji Chu ZK[2021]027)Major Science and Technology Program of Xinjiang Uygur Autonomous Region through No.2022A03013-1+1 种基金the National Key Research and Development Program of China(No.2022YFC2205202)the National Natural Science Foundation of China grants 12288102,12041304 and 11847102。
文摘The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.
基金financial support for this work provided by the National Natural Science Foundation of China(Nos.52274147,52374101,and 32111530138)the Jiangsu Province Basic Research Special Fund-Soft Science Research(No.BZ2024024)the State Key Research Development Program of China(No.2022YFC3004603).
文摘Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering.
文摘Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock,leading to severe seismic events and structural damage.Therefore,the development of reliable prediction models for rock bursts is paramount to mitigating these hazards.This study aims to propose a tree-based model—a Light Gradient Boosting Machine(LightGBM)—to predict the intensity of rock bursts in underground engineering.322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset,which serves to train the LightGBMmodel.Two population-basedmetaheuristic algorithms are used to optimize the hyperparameters of the LightGBM model.Finally,the sensitivity analysis is used to identify the predominant factors that may incur the occurrence of rock bursts.The results show that the population-based metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.The developed LightGBM model yields promising performance in predicting the intensity of rock bursts,with which accuracy on training and testing sets are 0.972 and 0.944,respectively.The sensitivity analysis discloses that the risk of occurring rock burst is significantly sensitive to three factors:uniaxial compressive strength(σc),stress concentration factor(SCF),and elastic strain energy index(Wet).Moreover,this study clarifies the particular impact of these three factors on the intensity of rock bursts through the partial dependence plot.
基金supported by the National Natural Science Foundation of China under grant 12065017Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001support from the Chinese Academy of Sciences(grant Nos.E329A3M1,E32983U8,and E3545KU2)。
文摘Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金supported by the National Key R&D Program of China(2021YFA0718500,2022YFF0711404)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.U2031205,12133007)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15360000。
文摘Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce the real-time burst alert system of GECAM,with the adoption of the BeiDou-3 short message communication service.We present the post-trigger operations,the detailed ground-based analysis,and the performance of the system.In the first year of the in-flight operation,GECAM was triggered by 42 gamma-ray bursts.The GECAM real-time burst alert system has the ability to distribute the alert within~1 minute after being triggered,which enables timely follow-up observations.
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.
文摘This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.
基金supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0118067246。
文摘For the practical use of femtosecond laser ablation, inputs of higher laser intensity are preferred to attain high-throughput material removal. However, the use of higher laser intensities for increasing ablation rates can have detrimental effects on ablation quality due to excess heat generation and air ionization. This paper employs ablation using BiBurst femtosecond laser pulses, which consist of multiple bursts(2 and 5 bursts) at a repetition rate of 64 MHz, each containing multiple intra-pulses(2–20 pulses) at an ultrafast repetition rate of 4.88 GHz, to overcome these conflicting conditions. Ablation of silicon substrates using the BiBurst mode with 5 burst pulses and 20 intra-pulses successfully prevents air breakdown at packet energies higher than the pulse energy inducing the air ionization by the conventional femtosecond laser pulse irradiation(single-pulse mode). As a result, ablation speed can be enhanced by a factor of23 without deteriorating the ablation quality compared to that by the single-pulse mode ablation under the conditions where the air ionization is avoided.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.
基金supported by the National Key R&D Program of China(2021YFA0718500)the National Natural Science Foundation of China under grants U2038106 and 12065017partially by the Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001。
文摘As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an active period in 2020 are published,including the duration and net photon counts of each burst,and waiting time based on the trigger time difference.In this paper,we utilize the power-law model,dN(x)/dx∝(x+x_0)~((-α)_x),to fit the cumulative distributions of these parameters.It can be found that all the cumulative distributions can be well fitted,which can be interpreted by a self-organizing criticality theory.Furthermore,we check whether this phenomenon still exists in different energy bands and find that there is no obvious evolution.These findings further confirm that the X-ray bursts from magnetars are likely to be generated by some self-organizing critical process,which can be explained by a possible magnetic reconnection scenario in magnetars.
基金the National SKA Program of China(2020SKA0120100)research projects of Henan Science and Technology Committee(212300410378)the National NaturalScience Foundationof China(NSFC)grant(U1938116).
文摘It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of the prompt emission of this gamma-ray burst(GRB).The observed time delay between the merger of the two NSs and the trigger of the GRB and the thermal tail of the prompt emission can hardly be reproduced by these models simultaneously.We argue that the merger remnant should be an NS(last for,at least,a large fraction of 1 s),and that the difficulty can be alleviated by the delayed formation of the accretion disk due to the absorption of high-energy neutrinos emitted by the NS and the delayed emergence of effective viscosity in the disk.Further,we extend the consideration of the effect of the energy deposition of neutrinos emitted from the NS.If the NS is the central object of a GRB with a distance and duration similar to that of GRB 170817A,thermal emission of the thermal bubble inflated by the NS after the termination of accretion may be detectable.If our scenario is verified,it would be of interest to investigate the cooling of nascent NSs.