Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past...Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.展开更多
The polymer solution for polymer flooding is a viscoelastic fluid. There exist both shear flow and elongational flow when the polymer solution flows in a porous medium, where an additional dissipation is involved. The...The polymer solution for polymer flooding is a viscoelastic fluid. There exist both shear flow and elongational flow when the polymer solution flows in a porous medium, where an additional dissipation is involved. The additional dissipation caused by elongational deformation is often ignored while studying the flow of the fluid in a porous medium. For a complex polymer solution, the generated elongational pressure drop cannot be ignored. In a capillary of fixed diameter, the polymer solution is only impacted by the shear force, and its rheological property is pseudoplastic. Therefore the variable diameter capillary and the converging-diverging flow model with different cross sections are required to describe the flow characteristics of the polymer solution in porous media more accurately. When the polymer solution flows through the port, we have the elongational flow and the polymer molecules undergo elongational deformation elastically. By using the mechanical energy balance principle and the minimum energy principle, a mathematical model of non-Newtonian fluid inlet flow was established by Binding. On the basis of the Binding theory, with the application of the theory of viscoelastic fluid flow in the circular capillary and the contraction-expansion tube, the relations between the viscoelastic fluid flow rate and the pressure drop are obtained.展开更多
基金supported by the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)The project was also partly supported by Natural Research Institute for Family Planning as well。
文摘Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.51574085)the Natural Science Founaation of Heilongjiang Province(Grant No.F2015020)the Science and Technology Research Project of Department of Education of Heilongjiang Province(Grant No.12521059)
文摘The polymer solution for polymer flooding is a viscoelastic fluid. There exist both shear flow and elongational flow when the polymer solution flows in a porous medium, where an additional dissipation is involved. The additional dissipation caused by elongational deformation is often ignored while studying the flow of the fluid in a porous medium. For a complex polymer solution, the generated elongational pressure drop cannot be ignored. In a capillary of fixed diameter, the polymer solution is only impacted by the shear force, and its rheological property is pseudoplastic. Therefore the variable diameter capillary and the converging-diverging flow model with different cross sections are required to describe the flow characteristics of the polymer solution in porous media more accurately. When the polymer solution flows through the port, we have the elongational flow and the polymer molecules undergo elongational deformation elastically. By using the mechanical energy balance principle and the minimum energy principle, a mathematical model of non-Newtonian fluid inlet flow was established by Binding. On the basis of the Binding theory, with the application of the theory of viscoelastic fluid flow in the circular capillary and the contraction-expansion tube, the relations between the viscoelastic fluid flow rate and the pressure drop are obtained.