Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire...Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.展开更多
Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wet...Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.展开更多
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The...NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The catalysts were used for the oxidative carbonylation of methanol to dime‐thyl carbonate (DMC) at atmospheric pressure. The textural and acidic properties of NaNH4Y zeolite and the CuY catalysts were investigated by X‐ray diffraction, scanning electron microscopy, N2 ad‐sorption‐desorption, temperature programmed reduction of H2, X‐ray photoelectron spectroscopy and temperature programmed desorption of NH3. With increasing NH4NO3 concentration, the NH4+exchange degree increased while the crystallinity of the zeolite remained intact. Crystalline CuO was formed when the NH4+exchange degree of NaNH4Y was low, and the corresponding CuY catalyst showed low catalytic activity. With increasing of the NH4+exchange degree of NaNH4Y, the content of surface bound Cu+active centers increased and the catalytic activity of the corresponding CuY catalyst also increased. The surface bound Cu+content reached its maximum when the NH4+ex‐change degree of NaNH4Y reached towards saturation. The CuY exhibited optimal catalytic activity with 267.3 mg/(g·h) space time yield of DMC, 6.9%conversion of methanol, 68.5%selectivity of DMC.展开更多
An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recy...An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recyclable non-metal selenium as a catalyst instead of the noble metal palladium;carbon monoxide as a carbonylation agent instead of virulent phosgene or one of its derivatives;and oxygen as an oxidant.The selenium-catalyzed oxidative carbonylation reaction of2-aminobenzyl alcohol proceeded efficiently in a single pot in the presence of triethylamine to afford l,4-dihydro-2H-3,l-benzoxazin-2-one in 87%yield.Furthermore,the selenium catalyst was readily recovered and recycled,affording a product yield of 80%after five cycles.展开更多
The critical node(CN) is an important stage during seed aging, which is related to effective genebank conservation. Previous studies have demonstrated that proteins undergo carbonylated modification at the CN in rice,...The critical node(CN) is an important stage during seed aging, which is related to effective genebank conservation. Previous studies have demonstrated that proteins undergo carbonylated modification at the CN in rice, indicating oxidative damage. However, the levels of reactive carbonyl species(RCS) and the associated scavenging system at the CN are largely unknown. In this study, we optimized methods for the extraction and analysis of RCS from dry rice embryos. In order to acquire seeds at the CN, rice seeds were subjected to natural conditions for 7, 9, 11 and 13 months, and the seed germination rates were reduced to 90%, 82%, 71% and 57%, respectively. We chose the stage with seed germination rate of 82% as the CN according to the rice seed vigor loss curve. The levels of crotonaldehyde and 4-hydroxy-(E)-2-nonenal(HNE) were significantly increased at the CN. In addition, genes encoding carbonyl-scavenging enzyme, including Os ALDHs and Os AKRs, were significantly down-regulated at the CN, and reductions in the expression of Os ALDH2-2, Os ALDH2-5, Os ALDH3-4, Os ALDH7, Os AKR1 and Os AKR2 in particular could be responsible for RCS accumulation. Thus, the accumulations of crotonaldehyde and HNE and down-regulation of genes encoding carbonyl-scavenging enzyme might be related to an accelerating loss of seed viability at the CN.展开更多
A series of novel cobalt carbonyl ionic liquids based on1,1,3,3‐tetra‐alkyl‐guanidine,such as[1,1‐dimethyl‐3,3‐diethylguanidinium][Co(CO)4](3a),[1,1‐dimethyl‐3,3‐dibutylguanidinium][Co(CO)4](3b),[1,1‐dimethy...A series of novel cobalt carbonyl ionic liquids based on1,1,3,3‐tetra‐alkyl‐guanidine,such as[1,1‐dimethyl‐3,3‐diethylguanidinium][Co(CO)4](3a),[1,1‐dimethyl‐3,3‐dibutylguanidinium][Co(CO)4](3b),[1,1‐dimethyl‐3,3‐tetramethyleneguanidinium][Co(CO)4](3c),and[1,1‐dimethyl‐3,3‐pentamethyleneguanidinium][Co(CO)4](3d),were synthesized in good yields and were also characterized using infrared spectroscopy,ultraviolet‐visible spectroscopy,1H nuclear magnetic resonance(NMR)spectroscopy,13C NMR spectroscopy,high‐resolution mass spectrometry,differential scanning calorimetry,and thermogravimetric analysis.The four compounds exhibited high thermal and chemical stability.In addition,the catalytic performance of these compounds was investigated in the carbonylation of epoxides,with3a exhibiting the best catalytic activity without the aid of a base as the additive.The catalyst could be reused at least six times without significant decreases of the selectivity or conversion rate.Moreover,the catalyst system exhibited good tolerance with terminal epoxides bearing alkyl,alkenyl,aryl,alkoxy,and chloromethyl functional groups.展开更多
The effects of various toxic carbonyls such as malondialdehyde(MDA),a secondary product of lipid peroxidation,and other aldehydes on rheological parameters and their relationship with aging-associated alterations were...The effects of various toxic carbonyls such as malondialdehyde(MDA),a secondary product of lipid peroxidation,and other aldehydes on rheological parameters and their relationship with aging-associated alterations were studied.Both MDA and glutaraldehyde(Glu) in different concentrations significantly increase viscosity,plastic viscosity and yield stress of human plasma and erythrocyte suspensions.MDA(20 mmol/L) reduces sharply the typical fluorescence of proteins(excitation 280 nm/emission 350 nm),and produces age pigment-like fluorescence with a strong emission peak at 460 nm when excites at 395 nm by only being incubated for some hours.In contrast,Glu decreases merely the fluorescence of proteins without producing age pigment-like fluorescence.These data suggest interestingly that the MDA-induced gradual protein cross linking seems to form from different mechanisms compared to the fast rheological changes of blood materials which may take place either in acute and chronic diseases or during aging.On the other hand,MDA induces various deleterious alterations of erythrocytes whereas glutathione(GSH) inhibits the MDA-related carbonyl stress in a concentration-dependent manner.The results indicate that carbonyl-amino reaction exists in the blood widely and GSH has the ability to interrupt or reverse this reaction in a certain way.It implies that carbonyl stress may be one of the important factors in blood stasis and suggests a theoretical and practical approach in anti-stresses and anti-aging.展开更多
Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the co...Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the copolymer ligand and complex, and the influences of the reaction conditions on the carbonylation catalyzed by this polymer complex have been investigated. In comparison with small molecule catalyst of Rh complex, the bidentate copolymer coordinated complex has better thermal stability. The reaction mechanism of the carbonylation reaction is also illustrated.展开更多
The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh) coordinated with the ethylene diacrylate (M') crosslinked c...The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh) coordinated with the ethylene diacrylate (M') crosslinked copolymer of methyl acrylate (M) and 2-vinylpyddine (V)shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex. Polar solvents can accelerate the reaction. Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system. A mechanism similar to that of soluble rhodium catalyst was proposed.展开更多
A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the acti...A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.展开更多
A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dic...A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol-acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.展开更多
To develop a luminescent material with high color purity, luminous efficiency, and stability, we synthesized diketone by carbonylative Suzuki coupling in the presence of Pd(NHC) complex as the catalyst. Carbonylative ...To develop a luminescent material with high color purity, luminous efficiency, and stability, we synthesized diketone by carbonylative Suzuki coupling in the presence of Pd(NHC) complex as the catalyst. Carbonylative coupling of 4,4’-diiodobiphenyl and phenylboronic acid was investigated to study in detail the catalytic ability of the Pd(NHC) complex. Reactions were carried out using both CO and metal carbonyls. Bis-(1,3-dihydro-1,3-dimethyl-2H-imidazol- 2-ylidene) diiodo palladium was used as the catalytic complex. Reaction products biphenyl-4,4’-diylbis (phenyl- methanone) 3 and (4’-iodobiphenyl-4-yl)(phenyl) methanone 4 were obtained as a result of CO insertion into the palladium(II)-aryl bond. However, when pyridine-4-yl boronic acid was used in place of phenylboronic acid as the starting reagent, synthetic reaction yielding 3 and 4 were found not to occur.展开更多
The neutral palladium(Ⅱ) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl]dichloropalladium(Ⅱ)(1A) ligated by thiazolylimidazolyl-based phosphine(L1) in which thiazolylimidazolyl acted as an...The neutral palladium(Ⅱ) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl]dichloropalladium(Ⅱ)(1A) ligated by thiazolylimidazolyl-based phosphine(L1) in which thiazolylimidazolyl acted as an S- and N-donor provider with weak coordinating nature,and the ionic complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-3-methylimidazolium]dichloropalladium(Ⅱ) trifluoromethanesulfonate(2A) ligated by thiazolylimidazolium-based phosphine(L2) after quaternization of L1 using methyl trifluoromethanesulphonate were synthesized.It was found that the introduced positive charges and strong electron-withdrawing effect in 2A not only led to changes in the configuration and structural stability of the complex,but also lowered its catalytic performance in carbonylative Sonogashira reactions.These effects reveal the important role of the N-donor in 1A.In addition,as an ionic palladium complex,2A combined with the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate could be recycled eight times as the catalyst in carbonylative Sonogashira reactions without detectable metal leaching.展开更多
Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeol...Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeolites, a key step in this new process, has attracted increasing attention due to the high reaction efficiency and promising industrial application.In recent years, continuous efforts have been made on improving the activity and stability of the zeolites.From a mechanistic point of view, DME carbonylation to MA, involving the formation of C–C bond, is achieved via the Koch-type CO insertion into DME within the 8-member ring(8-MR) pores of zeolites, typically HMOR and HZSM-35.The unique geometric configuration of the 8-MR pore endowed the formation of the key intermediate(acetyl, CH3CO^*), possibly by a spatial confinement of the transition state during CO insertion into the surface O–CH3 group.This review article summarizes the main progress on zeolite-catalyzed DME carbonylation, including reaction kinetics and mechanism, theoretical calculations, and experimental strategies developed for populating acid sites and engineering pore structure of the zeolites in order to enhance the overall performance.展开更多
Among the reactions catalyzed by zeolites there are some that exhibit high selectivity due to the spatial confinement effect of the zeolite framework.Tailoring the acidity,particularly the distribution and location of...Among the reactions catalyzed by zeolites there are some that exhibit high selectivity due to the spatial confinement effect of the zeolite framework.Tailoring the acidity,particularly the distribution and location of the Bronsted acid sites in the zeolite is effective for making it a better catalyst for these reactions.We prepared a series of H-mordenite(H-MOR) samples by varying the composition of the sol-gel,using different structure directing agents and post-treatment.NH3-TPD and IR characterization of adsorbed pyridine were employed to determine the amount of Bronsted acid sites in the 8-membered ring and 12-membered ring channels.It was shown that controlled synthesis was a promising approach to improve the concentration of Bronsted acid sites in MOR,even with a low Al content.Using an appropriate composition of Si and Al in the sol-gel favored a higher proportion of Bronsted acid sites in the 8-membered ring channels.HMI as a structure-direct agent gave an obvious enrichment of Bronsted acid sites in the 8-membered ring.Carbonylation of dimethyl ether was used as a probe reaction to examine the modification of the acid properties,especially the Bronsted acid sites in the 8-membered ring channels.There was a linear relationship between methyl acetate formation and the number of Bronsted acid sites in the 8-membered ring channels,demonstrating the successful modification of acid properties.Our results provide information for the rational design and modification of zeolites with spatial constraints.展开更多
To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization ...To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.展开更多
In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfi...In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.展开更多
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金Financial support from the National Key Research and Development Program of China(2022YFB3805602)the National Natural Science Foundation of China(22138001,22288102)the Fundamental Research Funds for the Central Universities。
文摘Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.
文摘Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金supported by the National Natural Science Foundation of China (21276169)~~
文摘NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The catalysts were used for the oxidative carbonylation of methanol to dime‐thyl carbonate (DMC) at atmospheric pressure. The textural and acidic properties of NaNH4Y zeolite and the CuY catalysts were investigated by X‐ray diffraction, scanning electron microscopy, N2 ad‐sorption‐desorption, temperature programmed reduction of H2, X‐ray photoelectron spectroscopy and temperature programmed desorption of NH3. With increasing NH4NO3 concentration, the NH4+exchange degree increased while the crystallinity of the zeolite remained intact. Crystalline CuO was formed when the NH4+exchange degree of NaNH4Y was low, and the corresponding CuY catalyst showed low catalytic activity. With increasing of the NH4+exchange degree of NaNH4Y, the content of surface bound Cu+active centers increased and the catalytic activity of the corresponding CuY catalyst also increased. The surface bound Cu+content reached its maximum when the NH4+ex‐change degree of NaNH4Y reached towards saturation. The CuY exhibited optimal catalytic activity with 267.3 mg/(g·h) space time yield of DMC, 6.9%conversion of methanol, 68.5%selectivity of DMC.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1061)the Program for Innovative Research Team in Science and Technology in University of Henan Province(15IRTSTHN003)+1 种基金the Young Backbone Teachers Training Fund of the Education Department of Henan Province(2013GGJS-059)Henan Normal University(2011-8)
文摘An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recyclable non-metal selenium as a catalyst instead of the noble metal palladium;carbon monoxide as a carbonylation agent instead of virulent phosgene or one of its derivatives;and oxygen as an oxidant.The selenium-catalyzed oxidative carbonylation reaction of2-aminobenzyl alcohol proceeded efficiently in a single pot in the presence of triethylamine to afford l,4-dihydro-2H-3,l-benzoxazin-2-one in 87%yield.Furthermore,the selenium catalyst was readily recovered and recycled,affording a product yield of 80%after five cycles.
基金supported by the National Key Technology R&D Program, China (Grant No. 2013BAD01B01)the National Natural Science Foundation of China Program (Grant Nos. 31371713 and 31401470)+1 种基金the Agricultural Science and Technology Innovation Program / Crop Germplasm Resources Preservation and Sharing Innovation Teamsupported by Central Laboratory of Biotechnology Research Institute, Chinese Academy of Agricultural Science
文摘The critical node(CN) is an important stage during seed aging, which is related to effective genebank conservation. Previous studies have demonstrated that proteins undergo carbonylated modification at the CN in rice, indicating oxidative damage. However, the levels of reactive carbonyl species(RCS) and the associated scavenging system at the CN are largely unknown. In this study, we optimized methods for the extraction and analysis of RCS from dry rice embryos. In order to acquire seeds at the CN, rice seeds were subjected to natural conditions for 7, 9, 11 and 13 months, and the seed germination rates were reduced to 90%, 82%, 71% and 57%, respectively. We chose the stage with seed germination rate of 82% as the CN according to the rice seed vigor loss curve. The levels of crotonaldehyde and 4-hydroxy-(E)-2-nonenal(HNE) were significantly increased at the CN. In addition, genes encoding carbonyl-scavenging enzyme, including Os ALDHs and Os AKRs, were significantly down-regulated at the CN, and reductions in the expression of Os ALDH2-2, Os ALDH2-5, Os ALDH3-4, Os ALDH7, Os AKR1 and Os AKR2 in particular could be responsible for RCS accumulation. Thus, the accumulations of crotonaldehyde and HNE and down-regulation of genes encoding carbonyl-scavenging enzyme might be related to an accelerating loss of seed viability at the CN.
基金supported by the National Natural Science Foundation of China(21373248,21673260,21133011)~~
文摘A series of novel cobalt carbonyl ionic liquids based on1,1,3,3‐tetra‐alkyl‐guanidine,such as[1,1‐dimethyl‐3,3‐diethylguanidinium][Co(CO)4](3a),[1,1‐dimethyl‐3,3‐dibutylguanidinium][Co(CO)4](3b),[1,1‐dimethyl‐3,3‐tetramethyleneguanidinium][Co(CO)4](3c),and[1,1‐dimethyl‐3,3‐pentamethyleneguanidinium][Co(CO)4](3d),were synthesized in good yields and were also characterized using infrared spectroscopy,ultraviolet‐visible spectroscopy,1H nuclear magnetic resonance(NMR)spectroscopy,13C NMR spectroscopy,high‐resolution mass spectrometry,differential scanning calorimetry,and thermogravimetric analysis.The four compounds exhibited high thermal and chemical stability.In addition,the catalytic performance of these compounds was investigated in the carbonylation of epoxides,with3a exhibiting the best catalytic activity without the aid of a base as the additive.The catalyst could be reused at least six times without significant decreases of the selectivity or conversion rate.Moreover,the catalyst system exhibited good tolerance with terminal epoxides bearing alkyl,alkenyl,aryl,alkoxy,and chloromethyl functional groups.
基金Project(2007AA02Z433) supported by the National High Technology Research and Development Program of ChinaProject(2007RS4017) supported by the Postdoctoral Science Foundation of Hunan Province,China
文摘The effects of various toxic carbonyls such as malondialdehyde(MDA),a secondary product of lipid peroxidation,and other aldehydes on rheological parameters and their relationship with aging-associated alterations were studied.Both MDA and glutaraldehyde(Glu) in different concentrations significantly increase viscosity,plastic viscosity and yield stress of human plasma and erythrocyte suspensions.MDA(20 mmol/L) reduces sharply the typical fluorescence of proteins(excitation 280 nm/emission 350 nm),and produces age pigment-like fluorescence with a strong emission peak at 460 nm when excites at 395 nm by only being incubated for some hours.In contrast,Glu decreases merely the fluorescence of proteins without producing age pigment-like fluorescence.These data suggest interestingly that the MDA-induced gradual protein cross linking seems to form from different mechanisms compared to the fast rheological changes of blood materials which may take place either in acute and chronic diseases or during aging.On the other hand,MDA induces various deleterious alterations of erythrocytes whereas glutathione(GSH) inhibits the MDA-related carbonyl stress in a concentration-dependent manner.The results indicate that carbonyl-amino reaction exists in the blood widely and GSH has the ability to interrupt or reverse this reaction in a certain way.It implies that carbonyl stress may be one of the important factors in blood stasis and suggests a theoretical and practical approach in anti-stresses and anti-aging.
文摘Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the copolymer ligand and complex, and the influences of the reaction conditions on the carbonylation catalyzed by this polymer complex have been investigated. In comparison with small molecule catalyst of Rh complex, the bidentate copolymer coordinated complex has better thermal stability. The reaction mechanism of the carbonylation reaction is also illustrated.
基金This work was supported by a Grant from the National Natural Science Foundation of China
文摘The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh) coordinated with the ethylene diacrylate (M') crosslinked copolymer of methyl acrylate (M) and 2-vinylpyddine (V)shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex. Polar solvents can accelerate the reaction. Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system. A mechanism similar to that of soluble rhodium catalyst was proposed.
文摘A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.
基金This work was supported by a Grant from the National Natural Science Foundation of China
文摘A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol-acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.
文摘To develop a luminescent material with high color purity, luminous efficiency, and stability, we synthesized diketone by carbonylative Suzuki coupling in the presence of Pd(NHC) complex as the catalyst. Carbonylative coupling of 4,4’-diiodobiphenyl and phenylboronic acid was investigated to study in detail the catalytic ability of the Pd(NHC) complex. Reactions were carried out using both CO and metal carbonyls. Bis-(1,3-dihydro-1,3-dimethyl-2H-imidazol- 2-ylidene) diiodo palladium was used as the catalytic complex. Reaction products biphenyl-4,4’-diylbis (phenyl- methanone) 3 and (4’-iodobiphenyl-4-yl)(phenyl) methanone 4 were obtained as a result of CO insertion into the palladium(II)-aryl bond. However, when pyridine-4-yl boronic acid was used in place of phenylboronic acid as the starting reagent, synthetic reaction yielding 3 and 4 were found not to occur.
基金supported by the National Natural Science Foundation of China(21473058,21273077)~~
文摘The neutral palladium(Ⅱ) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl]dichloropalladium(Ⅱ)(1A) ligated by thiazolylimidazolyl-based phosphine(L1) in which thiazolylimidazolyl acted as an S- and N-donor provider with weak coordinating nature,and the ionic complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-3-methylimidazolium]dichloropalladium(Ⅱ) trifluoromethanesulfonate(2A) ligated by thiazolylimidazolium-based phosphine(L2) after quaternization of L1 using methyl trifluoromethanesulphonate were synthesized.It was found that the introduced positive charges and strong electron-withdrawing effect in 2A not only led to changes in the configuration and structural stability of the complex,but also lowered its catalytic performance in carbonylative Sonogashira reactions.These effects reveal the important role of the N-donor in 1A.In addition,as an ionic palladium complex,2A combined with the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate could be recycled eight times as the catalyst in carbonylative Sonogashira reactions without detectable metal leaching.
基金supported by the National Natural Science Foundation of China(Grant no.20973166)
文摘Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeolites, a key step in this new process, has attracted increasing attention due to the high reaction efficiency and promising industrial application.In recent years, continuous efforts have been made on improving the activity and stability of the zeolites.From a mechanistic point of view, DME carbonylation to MA, involving the formation of C–C bond, is achieved via the Koch-type CO insertion into DME within the 8-member ring(8-MR) pores of zeolites, typically HMOR and HZSM-35.The unique geometric configuration of the 8-MR pore endowed the formation of the key intermediate(acetyl, CH3CO^*), possibly by a spatial confinement of the transition state during CO insertion into the surface O–CH3 group.This review article summarizes the main progress on zeolite-catalyzed DME carbonylation, including reaction kinetics and mechanism, theoretical calculations, and experimental strategies developed for populating acid sites and engineering pore structure of the zeolites in order to enhance the overall performance.
基金supported by the National Natural Science Foundation of China(21325626,21406120)the Postdoctoral Science Foundation of China(2014M560181,2015T80214)~~
文摘Among the reactions catalyzed by zeolites there are some that exhibit high selectivity due to the spatial confinement effect of the zeolite framework.Tailoring the acidity,particularly the distribution and location of the Bronsted acid sites in the zeolite is effective for making it a better catalyst for these reactions.We prepared a series of H-mordenite(H-MOR) samples by varying the composition of the sol-gel,using different structure directing agents and post-treatment.NH3-TPD and IR characterization of adsorbed pyridine were employed to determine the amount of Bronsted acid sites in the 8-membered ring and 12-membered ring channels.It was shown that controlled synthesis was a promising approach to improve the concentration of Bronsted acid sites in MOR,even with a low Al content.Using an appropriate composition of Si and Al in the sol-gel favored a higher proportion of Bronsted acid sites in the 8-membered ring channels.HMI as a structure-direct agent gave an obvious enrichment of Bronsted acid sites in the 8-membered ring.Carbonylation of dimethyl ether was used as a probe reaction to examine the modification of the acid properties,especially the Bronsted acid sites in the 8-membered ring channels.There was a linear relationship between methyl acetate formation and the number of Bronsted acid sites in the 8-membered ring channels,demonstrating the successful modification of acid properties.Our results provide information for the rational design and modification of zeolites with spatial constraints.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90505007 and 10774061)
文摘To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.
基金supported by the Ministry of Environmental Protection,Public Welfare Project(Contract No 201109034)the National Natural Science Foundation(U1137603)
文摘In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.