Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol ...Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol solution(combine A),high concentration BaCl_(2)solution(combine B)and low concentration BaCl_(2)solution(combine C),as coagulation bath and stretch bath,respectively.The combination of coagulation bath and stretch bath suitable for Ba^(2+) pre-crosslinking wet spinning was screened.The results showed that Ba^(2+) can induce the birefringence of the CA molecular chain,and the Ba^(2+) pre-crosslinking effect is the best when the CA mass fraction is 8.0 wt%.From the perspective of production safety,fiber performance and spinning cost,the coagulation bath of 3.5 wt%BaCl_(2)solution and stretch bath of 1.7 wt%BaCl_(2)solution,that is,combination C with low concentration BaCl_(2)solution,is the best choice.Ba/CAF-8.0/C was obtained under the best conditions.The linear intensity,water absorption and flame retardancy study showed that the breaking strength of Ba/CAF-8.0/C is as high as 1.61 cN/dtex,the water absorption was 649.2%and 574.3%,in deionized water and normal saline,respectively,and the LOI value reached 32.展开更多
A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanica...A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.展开更多
Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gi-gartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which pro-duce differe...Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gi-gartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which pro-duce different types of carrageenans, beta (β)-carrageenan, kappa (κ)-carrageenan and iota (ι)-carrageenan. So far the carrageenan biosynthesis pathway is not fully understood and few information is about the So-lieriaceae genome and transcriptome sequence. Here, we performed the de novo transcriptome sequencing, assembly, functional annotation and comparative analysis of these three commercial-valuable species using an Illumina short-sequencing platform Hiseq 2000 and bioinformatic software. Furthermore, we compared the different expression of some unigenes involved in some pathways relevant to carrageenan biosynthe-sis. We finally found 861 different expressed KEGG orthologs which contained a glycolysis/gluconeogenesis pathway (21 orthologs), carbon fixation in photosynthetic organisms (16 orthologs), galactose metabolism (5 orthologs), and fructose and mannose metabolism (9 orthologs) which are parts of the carbohydrate me-tabolism. We also found 8 different expressed KEGG orthologs for sulfur metabolism which might be impor-tantly related to biosynthesis of different types of carrageenans. The results presented in this study provided valuable resources for functional genomics annotation and investigation of mechanisms underlying the biosynthesis of carrageenan in Family Solieriaceae.展开更多
Solvent cast films are used as oral strips with potential to adhere to the mucosal surface, hydrate and deliver drugs across the buccal membrane. The objective of this study was the formulation development of bioadhes...Solvent cast films are used as oral strips with potential to adhere to the mucosal surface, hydrate and deliver drugs across the buccal membrane. The objective of this study was the formulation development of bioadhesive films with optimum drug loading for buccal delivery. Films prepared from κ-carrageenan, poloxamer and polyethylene glycol or glycerol, were loaded with ibuprofen as a model water insoluble drug. The films were characterized using texture analysis (TA), hot stage microscopy (HSM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), x-ray powder diffraction (XRPD), high performance liquid chromatography (HPLC) and in vitro drug dissolution. Optimized films were obtained from aqueous gels containing 2.5% w/w κ-carrageenan 911, 4% w/w poloxamer 407 and polyethylene glycol (PEG) 600 [5.5% w/w (non-drug loaded) and 6.5% w/w (drug loaded)]. A maximum of 0.8% w/w ibuprofen could be incorporated into the gels to obtain films with optimum characteristics. Texture analysis confirmed that optimum film flexibility was achieved from 5.5% w/w and 6.5% (w/w) of PEG 600 for blank films and ibuprofen loaded films respectively. TGA showed residual water content of the films as approximately 5%. DSC revealed a Tg for ibuprofen at -53.87。C, a unified Tm for PEG 600/poloxamer mixture at 32.74。C and the existence of ibuprofen in amorphous form, and confirmed by XRPD. Drug dissolution at a pH simulating that of saliva showed that amorphous ibuprofen was released from the films at a faster rate than the pure crystalline drug. The results show successful design of a carrageenan and poloxamer based drug delivery system with potential for buccal drug delivery and showed the conversion of crystalline ibuprofen to the amorphous form during film formation.展开更多
Oligo-carrageenans (OCs) obtained from pure carrageenans extracted from marine red algae stimulate growth by enhancing photosynthesis and basal metabolism in tobacco plants and Eucalyptus trees. In addition, OCs sti...Oligo-carrageenans (OCs) obtained from pure carrageenans extracted from marine red algae stimulate growth by enhancing photosynthesis and basal metabolism in tobacco plants and Eucalyptus trees. In addition, OCs stimulate secondary metabolism, increasing the level of metabolites involved in defense against pathogens. In this work, we analyzed the effect of OC kappa on the increase in height, in activities of basal metabolism enzymes in- volved in carbon, nitrogen and sulphur assimilation, ribu- lose 1,5 biphosphate carboxylase/oxygenase (rubisco), glutamate dehydrogenase (GDH) and O-acetylserine thiol- lyase (OASTL), and in the level of growth-promoting hormones, the auxin indole acetic acid (IAA) and the gibberellin GA3, in pine (Pinus radiata) trees treated with OC kappa at concentrations of 1 and 5 mg mL-1 and cultivated for 9 months without additional treatment. Pines treated with OC kappa at 1 mg mL-1 showed a similar increase in height but displayed a higher increased in total chlorophyll, activities of rubisco, GDH and OASTL and level of IAA and GA3 than those treated with OC kappa at 5 mg mL-1. Thus, OC kappa stimulates growth and basal metabolism and increases the level of growth-promoting hormones in pine trees, mainly at 1 mg mL-1.展开更多
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with ...The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.展开更多
Fiber intake improves gut health and prevents non-communicable diseases. The current study investigates the substitution of carrageenan in white bread and evaluates its effect on the physiochemical and structural char...Fiber intake improves gut health and prevents non-communicable diseases. The current study investigates the substitution of carrageenan in white bread and evaluates its effect on the physiochemical and structural characteristics of bread. The 100% wheat flour was used as control and the test sample contained 4% carrageenan. The physio-chemical analysis showed that carrageenan-substitution improved the hydration properties of the flour (WHC—1.33 g/g;SC—3.50 ml/g). Carrageen substituted bread had reduced the loaf volume. The fiber content in carrageenan-substituted bread was noticeably higher (9.4 g%) than control (3.5 g%). Crude lipid (4.6 g%) and protein (7.0 g%) content improved with carrageenan-substitution. The mineral contents (Na, K, Mg, Ca, Fe, and Zn) were increased in carrageenan-breads. The texture profile analysis showed a decreased hardness (H1—92.3 N, H2—62.5 N) and improved springiness (5.3 mm) in carrageenan-bread.展开更多
A novel biopolymer-based superabsorbent hydrogel composite based on kappa-carrageenan (κC) have been prepared via graft copolymerization of acrylic acid (AA) in the presence of bentonite powder using methylenebisacry...A novel biopolymer-based superabsorbent hydrogel composite based on kappa-carrageenan (κC) have been prepared via graft copolymerization of acrylic acid (AA) in the presence of bentonite powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The hydrogel structure was confirmed using FTIR spectroscopy and the morphology of the samples was examined by scanning electron microscopy (SEM). The affecting variables onto graft polymerization (i.e. AA, MBA and APS concentration, as well as the bentonite amount) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The results of Brunauer–Emmett–Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 11.5 nm. The effect of various salt media and solutions with different pHs on the swelling of the superabsorbent was also studied.展开更多
Rheometer and differential scanning calorimetry (DSC) have been used to probe the mechanism of gelation in gels formed by mixture of k-carrageenan and cellulose nanocrystals (CNC). The results indicated that an as...Rheometer and differential scanning calorimetry (DSC) have been used to probe the mechanism of gelation in gels formed by mixture of k-carrageenan and cellulose nanocrystals (CNC). The results indicated that an association occurred between CNC chains and aggregated k-carrageenan helices.展开更多
The multilayer of polyethylenimine (PEI) and carrageenan (k, i, l) formed by layer-by-layer assembly was investigated for its antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcu...The multilayer of polyethylenimine (PEI) and carrageenan (k, i, l) formed by layer-by-layer assembly was investigated for its antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcus faecalis 29505 for potential use as coating on biomaterial surface. All the multilayers exhibited growth inhibition. PEI/Iota carrageenan multilayer was effective in inhibiting the growth of the E. cloaceae, S. aureus and E. faecalis while PEI/Lambda carrageenan was effective in inhibiting the growth of E. cloaceae. Results of the paper strip test for combined action of carrageenan and PEI showed synergism with regards to bacterial growth inhibition. The multilayers had also contact-killing effect with the test organisms. The multilayer was also characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and biomolecular interaction analysis.展开更多
Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR)...Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry (ESIMS). Both oligosaccharides have structure of b-D-galactopyranose(Galp)4S-(1→4)-α-D-AnGalp2S-(1→3)-b-D-galactopyranose Galp)4S-(1→4)-α-D-AnGalp2S-(1→3). Application of the resulting oligosaccharides on protein delivery system in terms of encapsulation efficiency was performed.展开更多
In the context of climate change,the need to ensure food security and safety has taken center stage.Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant pr...In the context of climate change,the need to ensure food security and safety has taken center stage.Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses.However,the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment,which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application,contributing to global warming and climate change.The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds(Rhodophyta),carrageenans,could offer climate-friendly substitutes for these inputs due to their bi-functional activities.Carrageenans and their derivatives,known as oligo-carrageenans,facilitate plant growth through a multitude of metabolic courses,including chlorophyll metabolism,carbon fixation,photosynthesis,protein synthesis,secondary metabolite generation,and detoxification of reactive oxygen species.In parallel,these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate(SA)and/or jasmonate(JA)and ethylene(ET)signaling pathways,resulting in increased production of secondary metabolites,defense-related proteins,and antioxidants.The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change.In addition,the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed.This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.展开更多
The present investigation is an exploration of red sea weed carrageenan(CG)to expand its horizon for biomedical applications through functionalization for sustainable development.The primary goal of the present resear...The present investigation is an exploration of red sea weed carrageenan(CG)to expand its horizon for biomedical applications through functionalization for sustainable development.The primary goal of the present research work was to prepare a copolymeric material by the inclusion of sulfate moieties into hydrogels through covalent and supra-molecular interactions for drug delivery(DD)applications.Copolymers were characterized by field emission-scanning electron micrographs(FESEM),electron dispersion X-ray analysis(EDAX),atomic force microscopy(AFM),Fourier transform infrared spectroscopy(FTIR),13C nuclear magnetic resonance(NMR)and Xray diffraction(XRD)instrumentation.The FESEM,AFM and XRD analysis unveiled rough heterogeneous morphology and amorphous nature of hydrogels.FTIR and 13C NMR confirmed inclusion of poly(AAm)and poly(VSA)onto CG by grafting and crosslinking reactions.Hydrogels demonstrated blood compatible,mucoadhesive,antioxidant and antibacterial properties.Hydrogels also revealed 179%(Rhabdomyosarcoma)RD cell viability which indicated non-cytotoxicity to mammalian cells and promoted proliferation of cells.The release profile of the vancomycin drug followed non-Fickian diffusion and was best described by First order kinetic model.The results of physico-chemical properties demonstrated that these hydrogels have the potential for diverse biomedical applications,including DD.展开更多
V3 loop of HIV-1 envelop protein gp120 plays a pivotal role in the entry process of HIV-1 into target cells. R15K, the relatively conserved region of V3 loop, can be used in binding studies instead of recombinant gp12...V3 loop of HIV-1 envelop protein gp120 plays a pivotal role in the entry process of HIV-1 into target cells. R15K, the relatively conserved region of V3 loop, can be used in binding studies instead of recombinant gp120 molecule. Polyanionic compounds, such as carrageenan, possess antiviral activity through disrupting gp120-CD4 interaction, and chemical modifications have been performed to improve such activity. In this work, we, for the first time, analyzed the interactions between carrageenan or its degradation and R15K by affinity capillary electrophoresis (ACE). Our results revealed that depolymerized carrageenan rather than carrageenan could bind to R15K. The binding constant of depolymerized carrageenan was (2.94±0.57)× 10^6 mol/L. Our finding indicated that the depolymerized carrageenan could be R15K antagonist, and it might inhibit the infection of HIV-1 through the entry process.展开更多
Carrageenans(CGNs)are widely used in foods and pharmaceuticals although their safety remains controversial.To investigate the effects of CGNs and CGN-degrading bacteria in the human colon,we screened for CGN degradati...Carrageenans(CGNs)are widely used in foods and pharmaceuticals although their safety remains controversial.To investigate the effects of CGNs and CGN-degrading bacteria in the human colon,we screened for CGN degradation by human fecal microbiota,and for inflammatory response to CGNs and/or CGN-degrading bacteria in germ free mice.Thin-layer chromatography indicated that high molecular weight(MW)CGNs(!100 kDa)remained undegraded in the presence of human fecal microbiota,whereas low MW CGNs,i.e.,k-carrageenan oligosaccharides(KCO,~4.5 kDa)were degraded when exposed to seven of eight human fecal samples,although sulfate groups were not removed during degradation.Bacteroides xylanisolvens and Escherichia coli isolates from fecal samples apparently degraded KCO synergistically,with B.xylanisolvens serving as the primary degrader.Combined treatment of KCO with KCO-degrading bacteria led to greater pro-inflammatory effects in the colon and rectum of germ-free mice than either KCO or bacteria alone.Similarly,p-p38-,CD3-,and CD79a-positive immune cells were more abundant in combined treatment group mice than in either single treatment group.Our study shows that KCO-degrading bacteria and the low MW products of KCO can promote proinflammatory effects in mice,and represent two key markers for evaluating CGN safety in foods or medicines.展开更多
Conductive hydrogels have attached considerable attention due to their good stretchability,excellent conductivity when they are applied in soft electronics. However,to fabricate a flexible hydrogel sensor with excelle...Conductive hydrogels have attached considerable attention due to their good stretchability,excellent conductivity when they are applied in soft electronics. However,to fabricate a flexible hydrogel sensor with excellent toughness and good self-healing properties remains a challenge. In this work,we assembled a dual physical-crosslinking(DPC) ionic conductive polyacrylamide/carrageenan double-network(DN) hydrogel. This hydrogel has excellent fracture tensile stress and toughness,and demonstrates rapid self-recovery and self-healing ability due to the unique dual physical-crosslinking structures. Besides,the hydrogel is highly conductive by adding some conductive ions. As a result,the hydrogel-based sensor can stably detect human motions and physiological signals. The work provides novel ideas for the development of flexible sensing devices.展开更多
High internal phase emulsions (HIPEs) stabilized by nanoparticles based on biomacromolecules are challenging issues in recent decade.Herein,a newly developed HIPE was investigated by using heat-denatured porcine plasm...High internal phase emulsions (HIPEs) stabilized by nanoparticles based on biomacromolecules are challenging issues in recent decade.Herein,a newly developed HIPE was investigated by using heat-denatured porcine plasma protein (PPP) nanoparticles at pH 6.5 as emulsifier,and its emulsifying stability could be significantly enhanced by compounding carrageenan (CG).In the miscible system,PPP and CG formed hybrid particles through non-covalent interaction,and the sizes and zeta-potentials of the particles increased significantly along with addition of CG (from 0 to 0.7%,w/v),reached up to about 3.6 μm and −53 mV at 0.5% (w/v),respectively.CG weakened the ability of PPP to lower interfacial tension of oil/water (O/W),but increased the apparent viscosity of the system.The results from CLSM,rheology and stability experiments indicated a significant increasing trend of the HIPEs stability and solid-like characteristics along with addition of CG.Compared with the controls including bovine serum albumin (BSA),BSA-CG and CG alone,PPP-CG hybrid particles had good performance in fabricating and stabilizing the HIPEs.The work revealed the novel function of PPP as emulsifier of HIPEs and so offered the theoretical direction for application of PPP as a mass by-product,as well as an excellent HIPEs system for food,medicine and cosmetics fields.展开更多
基金supported by the Program of the National Natural Science Foundation of China(52173037)Natural Science Foundation of Shandong Province(ZR2020ME061)+1 种基金State Key Laboratory of Bio-Fibers and Eco-Textiles of Qingdao University(ZFT201810,ZKT17,TSKT202107)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT14R30).
文摘Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol solution(combine A),high concentration BaCl_(2)solution(combine B)and low concentration BaCl_(2)solution(combine C),as coagulation bath and stretch bath,respectively.The combination of coagulation bath and stretch bath suitable for Ba^(2+) pre-crosslinking wet spinning was screened.The results showed that Ba^(2+) can induce the birefringence of the CA molecular chain,and the Ba^(2+) pre-crosslinking effect is the best when the CA mass fraction is 8.0 wt%.From the perspective of production safety,fiber performance and spinning cost,the coagulation bath of 3.5 wt%BaCl_(2)solution and stretch bath of 1.7 wt%BaCl_(2)solution,that is,combination C with low concentration BaCl_(2)solution,is the best choice.Ba/CAF-8.0/C was obtained under the best conditions.The linear intensity,water absorption and flame retardancy study showed that the breaking strength of Ba/CAF-8.0/C is as high as 1.61 cN/dtex,the water absorption was 649.2%and 574.3%,in deionized water and normal saline,respectively,and the LOI value reached 32.
文摘A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.
基金The National Natural Science Foundation of China under contract Nos 31140070,31271397 and 41206116the algal transcrip-tome sequencing was supported by 1KP Project(www.onekp.com)
文摘Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gi-gartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which pro-duce different types of carrageenans, beta (β)-carrageenan, kappa (κ)-carrageenan and iota (ι)-carrageenan. So far the carrageenan biosynthesis pathway is not fully understood and few information is about the So-lieriaceae genome and transcriptome sequence. Here, we performed the de novo transcriptome sequencing, assembly, functional annotation and comparative analysis of these three commercial-valuable species using an Illumina short-sequencing platform Hiseq 2000 and bioinformatic software. Furthermore, we compared the different expression of some unigenes involved in some pathways relevant to carrageenan biosynthe-sis. We finally found 861 different expressed KEGG orthologs which contained a glycolysis/gluconeogenesis pathway (21 orthologs), carbon fixation in photosynthetic organisms (16 orthologs), galactose metabolism (5 orthologs), and fructose and mannose metabolism (9 orthologs) which are parts of the carbohydrate me-tabolism. We also found 8 different expressed KEGG orthologs for sulfur metabolism which might be impor-tantly related to biosynthesis of different types of carrageenans. The results presented in this study provided valuable resources for functional genomics annotation and investigation of mechanisms underlying the biosynthesis of carrageenan in Family Solieriaceae.
文摘Solvent cast films are used as oral strips with potential to adhere to the mucosal surface, hydrate and deliver drugs across the buccal membrane. The objective of this study was the formulation development of bioadhesive films with optimum drug loading for buccal delivery. Films prepared from κ-carrageenan, poloxamer and polyethylene glycol or glycerol, were loaded with ibuprofen as a model water insoluble drug. The films were characterized using texture analysis (TA), hot stage microscopy (HSM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), x-ray powder diffraction (XRPD), high performance liquid chromatography (HPLC) and in vitro drug dissolution. Optimized films were obtained from aqueous gels containing 2.5% w/w κ-carrageenan 911, 4% w/w poloxamer 407 and polyethylene glycol (PEG) 600 [5.5% w/w (non-drug loaded) and 6.5% w/w (drug loaded)]. A maximum of 0.8% w/w ibuprofen could be incorporated into the gels to obtain films with optimum characteristics. Texture analysis confirmed that optimum film flexibility was achieved from 5.5% w/w and 6.5% (w/w) of PEG 600 for blank films and ibuprofen loaded films respectively. TGA showed residual water content of the films as approximately 5%. DSC revealed a Tg for ibuprofen at -53.87。C, a unified Tm for PEG 600/poloxamer mixture at 32.74。C and the existence of ibuprofen in amorphous form, and confirmed by XRPD. Drug dissolution at a pH simulating that of saliva showed that amorphous ibuprofen was released from the films at a faster rate than the pure crystalline drug. The results show successful design of a carrageenan and poloxamer based drug delivery system with potential for buccal drug delivery and showed the conversion of crystalline ibuprofen to the amorphous form during film formation.
基金This work was supported by National Natural Science Foundation of China(31171654)National High-tech R&D Program(863 Program)of China(2011AA100805-2).
基金financed by Sirius Natura S.AVRIDEI-USACHfinanced by SENESCYTEcuador,Convocatoria 2011
文摘Oligo-carrageenans (OCs) obtained from pure carrageenans extracted from marine red algae stimulate growth by enhancing photosynthesis and basal metabolism in tobacco plants and Eucalyptus trees. In addition, OCs stimulate secondary metabolism, increasing the level of metabolites involved in defense against pathogens. In this work, we analyzed the effect of OC kappa on the increase in height, in activities of basal metabolism enzymes in- volved in carbon, nitrogen and sulphur assimilation, ribu- lose 1,5 biphosphate carboxylase/oxygenase (rubisco), glutamate dehydrogenase (GDH) and O-acetylserine thiol- lyase (OASTL), and in the level of growth-promoting hormones, the auxin indole acetic acid (IAA) and the gibberellin GA3, in pine (Pinus radiata) trees treated with OC kappa at concentrations of 1 and 5 mg mL-1 and cultivated for 9 months without additional treatment. Pines treated with OC kappa at 1 mg mL-1 showed a similar increase in height but displayed a higher increased in total chlorophyll, activities of rubisco, GDH and OASTL and level of IAA and GA3 than those treated with OC kappa at 5 mg mL-1. Thus, OC kappa stimulates growth and basal metabolism and increases the level of growth-promoting hormones in pine trees, mainly at 1 mg mL-1.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(Project number 20299035,20035010,20275039)Pilot of Knowledge Innovation Program of the Chinese Academy of Science(KSCX 2-3-02-02)on the above work.
文摘The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.
文摘Fiber intake improves gut health and prevents non-communicable diseases. The current study investigates the substitution of carrageenan in white bread and evaluates its effect on the physiochemical and structural characteristics of bread. The 100% wheat flour was used as control and the test sample contained 4% carrageenan. The physio-chemical analysis showed that carrageenan-substitution improved the hydration properties of the flour (WHC—1.33 g/g;SC—3.50 ml/g). Carrageen substituted bread had reduced the loaf volume. The fiber content in carrageenan-substituted bread was noticeably higher (9.4 g%) than control (3.5 g%). Crude lipid (4.6 g%) and protein (7.0 g%) content improved with carrageenan-substitution. The mineral contents (Na, K, Mg, Ca, Fe, and Zn) were increased in carrageenan-breads. The texture profile analysis showed a decreased hardness (H1—92.3 N, H2—62.5 N) and improved springiness (5.3 mm) in carrageenan-bread.
文摘A novel biopolymer-based superabsorbent hydrogel composite based on kappa-carrageenan (κC) have been prepared via graft copolymerization of acrylic acid (AA) in the presence of bentonite powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The hydrogel structure was confirmed using FTIR spectroscopy and the morphology of the samples was examined by scanning electron microscopy (SEM). The affecting variables onto graft polymerization (i.e. AA, MBA and APS concentration, as well as the bentonite amount) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The results of Brunauer–Emmett–Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 11.5 nm. The effect of various salt media and solutions with different pHs on the swelling of the superabsorbent was also studied.
文摘Rheometer and differential scanning calorimetry (DSC) have been used to probe the mechanism of gelation in gels formed by mixture of k-carrageenan and cellulose nanocrystals (CNC). The results indicated that an association occurred between CNC chains and aggregated k-carrageenan helices.
文摘The multilayer of polyethylenimine (PEI) and carrageenan (k, i, l) formed by layer-by-layer assembly was investigated for its antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcus faecalis 29505 for potential use as coating on biomaterial surface. All the multilayers exhibited growth inhibition. PEI/Iota carrageenan multilayer was effective in inhibiting the growth of the E. cloaceae, S. aureus and E. faecalis while PEI/Lambda carrageenan was effective in inhibiting the growth of E. cloaceae. Results of the paper strip test for combined action of carrageenan and PEI showed synergism with regards to bacterial growth inhibition. The multilayers had also contact-killing effect with the test organisms. The multilayer was also characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and biomolecular interaction analysis.
文摘Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry (ESIMS). Both oligosaccharides have structure of b-D-galactopyranose(Galp)4S-(1→4)-α-D-AnGalp2S-(1→3)-b-D-galactopyranose Galp)4S-(1→4)-α-D-AnGalp2S-(1→3). Application of the resulting oligosaccharides on protein delivery system in terms of encapsulation efficiency was performed.
文摘In the context of climate change,the need to ensure food security and safety has taken center stage.Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses.However,the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment,which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application,contributing to global warming and climate change.The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds(Rhodophyta),carrageenans,could offer climate-friendly substitutes for these inputs due to their bi-functional activities.Carrageenans and their derivatives,known as oligo-carrageenans,facilitate plant growth through a multitude of metabolic courses,including chlorophyll metabolism,carbon fixation,photosynthesis,protein synthesis,secondary metabolite generation,and detoxification of reactive oxygen species.In parallel,these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate(SA)and/or jasmonate(JA)and ethylene(ET)signaling pathways,resulting in increased production of secondary metabolites,defense-related proteins,and antioxidants.The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change.In addition,the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed.This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.
文摘The present investigation is an exploration of red sea weed carrageenan(CG)to expand its horizon for biomedical applications through functionalization for sustainable development.The primary goal of the present research work was to prepare a copolymeric material by the inclusion of sulfate moieties into hydrogels through covalent and supra-molecular interactions for drug delivery(DD)applications.Copolymers were characterized by field emission-scanning electron micrographs(FESEM),electron dispersion X-ray analysis(EDAX),atomic force microscopy(AFM),Fourier transform infrared spectroscopy(FTIR),13C nuclear magnetic resonance(NMR)and Xray diffraction(XRD)instrumentation.The FESEM,AFM and XRD analysis unveiled rough heterogeneous morphology and amorphous nature of hydrogels.FTIR and 13C NMR confirmed inclusion of poly(AAm)and poly(VSA)onto CG by grafting and crosslinking reactions.Hydrogels demonstrated blood compatible,mucoadhesive,antioxidant and antibacterial properties.Hydrogels also revealed 179%(Rhabdomyosarcoma)RD cell viability which indicated non-cytotoxicity to mammalian cells and promoted proliferation of cells.The release profile of the vancomycin drug followed non-Fickian diffusion and was best described by First order kinetic model.The results of physico-chemical properties demonstrated that these hydrogels have the potential for diverse biomedical applications,including DD.
基金National Natural Science Foundation(Grant No.81373372)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110001110021 and 20130001110059)
文摘V3 loop of HIV-1 envelop protein gp120 plays a pivotal role in the entry process of HIV-1 into target cells. R15K, the relatively conserved region of V3 loop, can be used in binding studies instead of recombinant gp120 molecule. Polyanionic compounds, such as carrageenan, possess antiviral activity through disrupting gp120-CD4 interaction, and chemical modifications have been performed to improve such activity. In this work, we, for the first time, analyzed the interactions between carrageenan or its degradation and R15K by affinity capillary electrophoresis (ACE). Our results revealed that depolymerized carrageenan rather than carrageenan could bind to R15K. The binding constant of depolymerized carrageenan was (2.94±0.57)× 10^6 mol/L. Our finding indicated that the depolymerized carrageenan could be R15K antagonist, and it might inhibit the infection of HIV-1 through the entry process.
基金supported by National Natural Science Foundation of China(NSFC,31870106)supported by National Natural Science Foundation of China(NSFC,81991522)+6 种基金Key Research&Development of Zhejiang Province(2018C02048)State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts(2010DS0024-ZZ006)the National Science and Technology Major Project for Significant New Drug Development(2018ZX09735004)Taishan Scholar Climbing Project(TSPD20210304)supported by Distinguished Young Scholars of Hunan Natural Science Foundation(2020JJ2016)supported by NIGMS R44GM113545 and P20GM103434supported by NIGMS WV-INBRE P20GM103434。
文摘Carrageenans(CGNs)are widely used in foods and pharmaceuticals although their safety remains controversial.To investigate the effects of CGNs and CGN-degrading bacteria in the human colon,we screened for CGN degradation by human fecal microbiota,and for inflammatory response to CGNs and/or CGN-degrading bacteria in germ free mice.Thin-layer chromatography indicated that high molecular weight(MW)CGNs(!100 kDa)remained undegraded in the presence of human fecal microbiota,whereas low MW CGNs,i.e.,k-carrageenan oligosaccharides(KCO,~4.5 kDa)were degraded when exposed to seven of eight human fecal samples,although sulfate groups were not removed during degradation.Bacteroides xylanisolvens and Escherichia coli isolates from fecal samples apparently degraded KCO synergistically,with B.xylanisolvens serving as the primary degrader.Combined treatment of KCO with KCO-degrading bacteria led to greater pro-inflammatory effects in the colon and rectum of germ-free mice than either KCO or bacteria alone.Similarly,p-p38-,CD3-,and CD79a-positive immune cells were more abundant in combined treatment group mice than in either single treatment group.Our study shows that KCO-degrading bacteria and the low MW products of KCO can promote proinflammatory effects in mice,and represent two key markers for evaluating CGN safety in foods or medicines.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51703012 and 51873024)。
文摘Conductive hydrogels have attached considerable attention due to their good stretchability,excellent conductivity when they are applied in soft electronics. However,to fabricate a flexible hydrogel sensor with excellent toughness and good self-healing properties remains a challenge. In this work,we assembled a dual physical-crosslinking(DPC) ionic conductive polyacrylamide/carrageenan double-network(DN) hydrogel. This hydrogel has excellent fracture tensile stress and toughness,and demonstrates rapid self-recovery and self-healing ability due to the unique dual physical-crosslinking structures. Besides,the hydrogel is highly conductive by adding some conductive ions. As a result,the hydrogel-based sensor can stably detect human motions and physiological signals. The work provides novel ideas for the development of flexible sensing devices.
基金supported by the National Natural Science Foundation of China(31371741).
文摘High internal phase emulsions (HIPEs) stabilized by nanoparticles based on biomacromolecules are challenging issues in recent decade.Herein,a newly developed HIPE was investigated by using heat-denatured porcine plasma protein (PPP) nanoparticles at pH 6.5 as emulsifier,and its emulsifying stability could be significantly enhanced by compounding carrageenan (CG).In the miscible system,PPP and CG formed hybrid particles through non-covalent interaction,and the sizes and zeta-potentials of the particles increased significantly along with addition of CG (from 0 to 0.7%,w/v),reached up to about 3.6 μm and −53 mV at 0.5% (w/v),respectively.CG weakened the ability of PPP to lower interfacial tension of oil/water (O/W),but increased the apparent viscosity of the system.The results from CLSM,rheology and stability experiments indicated a significant increasing trend of the HIPEs stability and solid-like characteristics along with addition of CG.Compared with the controls including bovine serum albumin (BSA),BSA-CG and CG alone,PPP-CG hybrid particles had good performance in fabricating and stabilizing the HIPEs.The work revealed the novel function of PPP as emulsifier of HIPEs and so offered the theoretical direction for application of PPP as a mass by-product,as well as an excellent HIPEs system for food,medicine and cosmetics fields.