To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is...To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is usually restricted by the trade-off between the dispersity and light absorption property of metal catalysts.Here we demonstrate a simple SiO 2-protected metal-organic framework pyrolysis strategy to fabricate a new type of integrated photothermal nanoreactor with a comparatively high metal loading,dispersity,and stability.The core-satellite structured Co@SiO_(2)exhibits strong sunlight-absorptive abil-ity and excellent catalytic activity in CO_(2)hydrogenation,which is ascribed to the functional separation of diff erent sizes of Co nanoparticles.Large-sized plasmonic Co nanoparticles are mainly responsible for the light absorption and conversion to heat(nanoheaters),whereas small-sized Co nanoparticles with high intrinsic activities are responsible for the catalysis(nanoreactors).This study provides a new concept for designing effi cient photothermal catalytic materials.展开更多
The use of low-quality coals and flotoconcentrates is currently severely limited,and the problem of managing municipal waste from anthropogenic activities is currently a challenge.The problems of reducing carbon dioxi...The use of low-quality coals and flotoconcentrates is currently severely limited,and the problem of managing municipal waste from anthropogenic activities is currently a challenge.The problems of reducing carbon dioxide emissions,utilizing the energy potential of waste and increasing its recycling have an impact on the costs of electricity production.Considering the abundant streams of unused fuels,they can be considered as attractive energy materials,so environmentally-friendly and cost-effective options for their utilization should be developed.A study was conducted using steam co-gasification technology on selected coals,flotation concentrates and Refuse Derived Fuel(RDF)alternative fuel.Selected low-quality coals were combined with RDF alternative fuel in a process aimed at hydrogen production.The experiments produced gas with hydrogen concentrations ranging from 67%(vol.)to 68%(vol.)with low methane concentrations.It was observed that the addition of alternative fuels helped to increase the hydrogen concentration in syngas.Attention was paid to the catalytic ability of the metal oxides contained in the fuel blend,with particular reference to K_(2)O and Al_(2)O_(3)and TiO_(2).展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 52172221, 21902113, and 51920105005)the Natural Science Foundation of Jiangsu Province (BK20200101)+6 种基金the National Key R&D Program of China (2021YFF0502000)the National Postdoctoral Program for Innovative Talents (BX20220222)the China Postdoctoral Science Foundation (2021M702388)Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB564)Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technologythe “111” ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is usually restricted by the trade-off between the dispersity and light absorption property of metal catalysts.Here we demonstrate a simple SiO 2-protected metal-organic framework pyrolysis strategy to fabricate a new type of integrated photothermal nanoreactor with a comparatively high metal loading,dispersity,and stability.The core-satellite structured Co@SiO_(2)exhibits strong sunlight-absorptive abil-ity and excellent catalytic activity in CO_(2)hydrogenation,which is ascribed to the functional separation of diff erent sizes of Co nanoparticles.Large-sized plasmonic Co nanoparticles are mainly responsible for the light absorption and conversion to heat(nanoheaters),whereas small-sized Co nanoparticles with high intrinsic activities are responsible for the catalysis(nanoreactors).This study provides a new concept for designing effi cient photothermal catalytic materials.
文摘The use of low-quality coals and flotoconcentrates is currently severely limited,and the problem of managing municipal waste from anthropogenic activities is currently a challenge.The problems of reducing carbon dioxide emissions,utilizing the energy potential of waste and increasing its recycling have an impact on the costs of electricity production.Considering the abundant streams of unused fuels,they can be considered as attractive energy materials,so environmentally-friendly and cost-effective options for their utilization should be developed.A study was conducted using steam co-gasification technology on selected coals,flotation concentrates and Refuse Derived Fuel(RDF)alternative fuel.Selected low-quality coals were combined with RDF alternative fuel in a process aimed at hydrogen production.The experiments produced gas with hydrogen concentrations ranging from 67%(vol.)to 68%(vol.)with low methane concentrations.It was observed that the addition of alternative fuels helped to increase the hydrogen concentration in syngas.Attention was paid to the catalytic ability of the metal oxides contained in the fuel blend,with particular reference to K_(2)O and Al_(2)O_(3)and TiO_(2).