期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
EFFECT OF FIBER FAILURE ON QUASI-STATIC UNLOADING/RELOADING HYSTERESIS LOOPS OF CERAMIC MATRIX COMPOSITES 被引量:1
1
作者 李龙彪 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期94-102,共9页
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ... The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data. 展开更多
关键词 ceramic matrix composites hysteresis loops matrix cracking interface debonding fiber failure
下载PDF
EVOLUTION OF THE MICROCRACKS IN WHISKER TOUGHENING CERAMIC MATRIX COMPOSITES 被引量:2
2
作者 Li Wenfang, South China University of Technology, Guangzhou 510641, R. R. ChinaDu Shanyi, Harbin Institute of Technology, Harbin 150001 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第1期75-83,共9页
The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks... The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks on the mechanical properties of the material. The effect of residual thermostrain, whisker content and aspect ratio is considered. The modulus, initial nonlinear load, strength and nonlinear constitutive relation are calculated and some important conclusions are given. 展开更多
关键词 WHISKER MICROCRACK ceramic matrix composites material strength nonlinear constitutive relation
下载PDF
Effect of Interfacial Bonding on the Toughening of Al_2O_3/Ni Ceramic Matrix Composites
3
作者 Xudong SUN(Dept. of Materials Science and Engineering, Northeastern University, Shenyang 110006, China)J.A. Yeomans(Dept. of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, UK) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期29-34,共6页
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation.... The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite. 展开更多
关键词 AL Effect of Interfacial Bonding on the Toughening of Al2O3/Ni ceramic matrix composites NI
下载PDF
Preparation and Mechanical Properties of Al_2O_3/Al Laminated Ceramic Matrix Composites 被引量:2
4
作者 黄康明 吴建青 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期891-896,共6页
Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat... Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed. 展开更多
关键词 LAMINATED ceramic matrix composite mechanical properties
下载PDF
High-performance grinding of ceramic matrix composites
5
作者 Jingfei Yin Jiuhua Xu Honghua Su 《Nanotechnology and Precision Engineering》 EI CAS 2024年第3期45-55,共11页
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide... Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application. 展开更多
关键词 ceramic matrix composite Grinding Surfacefinish Subsurface damage Fiber breakage
下载PDF
A review on additive manufacturing of ceramic matrix composites 被引量:4
6
作者 Jinxing Sun Daorong Ye +7 位作者 Ji Zou Xiaoteng Chen Yue Wang Jinsi Yuan Haowen Liang Hongqiao Qu Jon Binner Jiaming Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期1-16,共16页
Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compa... Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compared to single-phase ceramic components.It also opens up a new way to shape damage-tolerant ceramic composites with co-continuous phase reinforcement inspired by natural ma-terials.Nowadays,a large variety of AM techniques has been successfully applied to fabricate CMCs,but variable properties have been obtained so far.This article provides a comprehensive review on the AM of ceramic matrix composites through a systematic evaluation of the capabilities and limitations of each AM technique,with an emphasis on reported results regarding the properties and potentials of AM man-ufactured ceramic matrix composites. 展开更多
关键词 Additive manufacturing ceramic matrix composites 3D printing Mechanical properties Bioinspired composites
原文传递
Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles
7
作者 Diletta Sciti Antonio Vinci +6 位作者 Luca Zoli Pietro Galizia Simone Failla Stefano Mungiguerra Giuseppe D.Di Martino Anselmo Cecere Raffaele Savino 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第7期1345-1360,共16页
Ultra-high-temperature ceramic matrix composites(UHTCMCs)based on a ZrB_(2)/SiC matrix have been investigated for the fabrication of reusable nozzles for propulsion.Three de Laval nozzle prototypes,obtained by sinteri... Ultra-high-temperature ceramic matrix composites(UHTCMCs)based on a ZrB_(2)/SiC matrix have been investigated for the fabrication of reusable nozzles for propulsion.Three de Laval nozzle prototypes,obtained by sintering with either hot pressing(HP)or spark plasma sintering(SPS),were tested 2-3 times in a hybrid rocket motor for proving reusability.Sections were extracted after oxidation tests to study the microstructural changes and oxidative and thermomechanical stresses induced by the repeated tests.Compared to a reference graphite nozzle,no measurable erosion was observed for the UHTCMC-based nozzles.The oxidation mechanism consisted in the formation of a ZrO_(2)intermediate layer,with a liquid silicon oxide(SiO_(2))layer on the surface that was displaced by the action of the gas flux towards the divergent part of the nozzle,protecting it from further oxidation.Both specimens obtained by HP and SPS displayed similar performance,with very slight differences,which were attributed to small changes in porosity.These tests demonstrated the capability of complex-shaped prototypes made of the developed UHTCMCs to survive repeated exposure to environments representative of a realistic space propulsion application,for overall operating time up to 30 s,without any failure nor measurable erosion,making a promising step towards the development of reusable rocket components. 展开更多
关键词 ultra-high-temperature ceramics(UHTCs) ceramic matrix composites(CMCs) PROPULSION oxidation resistance nozzle prototypes
原文传递
Machining of SiC ceramic matrix composites:A review 被引量:37
8
作者 Qinglong AN Jie CHEN +1 位作者 Weiwei MING Ming CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期540-567,共28页
Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transport... Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transportation)with high value,and have triggered the demand for machining.However,the high brittleness,anisotropy,and heterogeneity of materials bring great challenges to machining,due to high mechanical and thermal loads,severe tool wear,and poor machining quality.With the increasing demand of FRCMCs-SiC parts,high-quality and high-efficient machining has become a hot issue.This review paper provides a detailed literature survey on the machining of FRCMCs-SiC.The material removal mechanism,defect form,and interfacial mechanical properties of FRCMCs-SiC were summarized.The machining processes of FRCMCs-SiC were introduced,and their respective advantages and disadvantages were compared.Given the low machinability(high hardness,high brittleness,anisotropy,and heterogeneity)of FRCMCs-SiC,preliminary experiments have proved that ultrasonic-assisted machining and laser-assisted machining have shown unique advantages in reducing force and tool wear,improving machining quality and machining efficiency.The machined surface integrity was discussed,the influence of process parameters on the machined surface quality was analyzed,and the machining defects of FRCMCs-SiC were summarized.But for FRCMCs-SiC,the existing quantitative evaluation of the machined surface integrity was weak and unsystematic. 展开更多
关键词 ceramic matrix composites MACHINING Material removal mechanisms QUALITY Surface integrity
原文传递
Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets 被引量:6
9
作者 Bei-Ying Zhou Sheng-Jie Fan +4 位作者 Yu-Chi Fan Qi Zheng Xin Zhang Wan Jiang Lian-Jun Wang 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期513-528,共16页
Graphene nanoplatelets(GNPs)are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties.In addition,their impressive electrical ... Graphene nanoplatelets(GNPs)are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties.In addition,their impressive electrical and thermal properties make them attractive fillers for producing multifunctional ceramics with a wide range of applications.This paper reviews the current status of the research and development of graphene-reinforced ceramic matrix composite(CMC)materials.Firstly,we focused on the processing methods for effective dispersion of GNPs throughout ceramic matrices and the reduction of the porosity of CMC products.Then,the microstructure and mechanical properties are provided,together with an emphasis on the possible toughening mechanisms that may operate.Additionally,the unique functional properties endowed by GNPs,such as enhanced electrical/thermal conductivity,are discussed,with a comprehensive comparison in different ceramic matrices as oxide and nonoxide composites.Finally,the prospects and problems needed to be solved in GNPs-reinforced CMCs are discussed. 展开更多
关键词 Graphene nanoplatelets ceramic matrix composites Processing methods Mechanical properties Functional properties
原文传递
Frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites 被引量:3
10
作者 Yadong Zhou Xiaochen Hang +2 位作者 Shaoqing Wu Qingguo Fei Natasa Trisovic 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第2期165-173,共9页
The panel-type structures used in aerospace engineering can be subjected to severe highfrequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made ... The panel-type structures used in aerospace engineering can be subjected to severe highfrequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites(CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a deinite period of time. The probability density distributions of stress amplitudes will be different in different frequency bandwidths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically veriied. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves.Therefore, the inluence of vibration frequency can be incorporated in the random fatigue model from the two perspectives. 展开更多
关键词 Random fatigue Frequency effect ceramic matrix composites(CMCs) S-N curve Loading frequency
原文传递
RESEARCH ON MATRIX CRACK EVOLUTION OF CROSS-PLY CERAMIC MATRIX COMPOSITE 被引量:1
11
作者 杨福树 孙志刚 +1 位作者 李龙彪 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期112-119,共8页
The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five ... The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five damage modes.The cracking mode 3 contains transverse cracking,matrix cracking and fiber/matrix interface debonding.The cracking mode 5 only contains matrix cracking and fiber/matrix interface debonding.The cracking stress of modes 3 and 5 appearing between existing transverse cracks is determined.And the multiple matrix crack evolution of mode 3 is determined.The effects of ply thickness,fiber volume fraction,interface shear stress and interface debonding energy on the cracking stress and matrix crack evolution are analyzed.Results indicate that the cracking mode 3 is more likely to appear between transverse cracks for the SiC/CAS material. 展开更多
关键词 ceramic matrix composites CROSS-PLY matrix crack evolution energy balance approach
下载PDF
A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration 被引量:2
12
作者 GUAN Kang WU Jianqing CHENG Laifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1365-1371,共7页
We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the... We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃. 展开更多
关键词 isothermal chemical vapor infiltration ceramic matrix composites process parameters fiber preform structure densification behavior
下载PDF
STUDY ON PREPARATION OF CERAMIC MATRIX COMPOSITE OF WC-Co ULTRAFINE POWDERS 被引量:1
13
作者 曹立宏 时东霞 +1 位作者 欧阳世翕 关波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1995年第2期40-46,共7页
The W -Co compound precursor powders with an average particle sife of 60 nm were prepared by the chemical coprecipitation as the raw materials of Na2WO1 and CoCl2 and as the reagents of HCI and NH3 ?H2O. After re-duci... The W -Co compound precursor powders with an average particle sife of 60 nm were prepared by the chemical coprecipitation as the raw materials of Na2WO1 and CoCl2 and as the reagents of HCI and NH3 ?H2O. After re-ducing and carburizing the precursor powders by hydrogen gas and CO-CO 2 mixture gas. the WC-Co composite povvders ivith an average particle size of 0. 18/wi can be obtained. The purity and particle size of powders -were analysed by XRD and TEM. respectively. Meanwhile, the key factors to influ-ence the reducing and carburizing process of powders were also studied. 展开更多
关键词 WC-CO ceramic matrix composite ul-trafine powders
下载PDF
不同编织方式下陶瓷基复合材料表面流动特性数值计算研究
14
作者 张金月 杨荣菲 +1 位作者 吴兴爽 葛宁 《风机技术》 2024年第2期38-43,共6页
Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoi... Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoil components, which mainly comes from different weaving methods and different braided tow thickness. However, few people have studied the influence of surface morphology of ceramic matrix composites(CMCs) on the development of boundary layer and the resulting flow loss. In this paper, Tex Gen is used to generate different surface morphology structures of ceramic matrix composites(CMCs), and the surface flow characteristics of corresponding CMCs plates are numerically studied. It is found that the slope of the displacement thickness of the woven surface first increases and then decreases in the whole transition interval. Thicker braided tow thickness and denser braiding method will induce earlier flow transition phenomenon and produce greater flow loss;The flow loss on the surface of CMCs plate is mainly composed of the vortex loss in the pit and the boundary layer loss outside the pit, and the boundary layer loss is dominant. The weaving methods has a greater influence on the flow state and flow loss of the boundary layer. 展开更多
关键词 ceramic matrix composites Weave Pattern Boundary Layer Transition PIT Flow Loss
下载PDF
Thermal shock fatigue behavior of TiC/Al_2O_3 composite ceramics 被引量:6
15
作者 SI Tingzhi LIU Ning +1 位作者 ZHANG Qing' an YOU Xianqing 《Rare Metals》 SCIE EI CAS CSCD 2008年第3期308-314,共7页
The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was disc... The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites. 展开更多
关键词 ceramic matrix composites TiC/Al2O3 composites thermal shock fatigue fatigue behavior fatigue resistance
下载PDF
Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction 被引量:4
16
作者 Zhuan Li Peng Xiao Xiang Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期500-505,共6页
Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mec... Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mechanism of C/C-SiC composites at different brake speeds were investigated.The results indicate that the composites are composed of 58wt%C,37wt%SiC,and 5wt%Si.The density and open porosity are 2.0 g.cm^(-3) and 10%,respectively.The C/C-SiC brake composites exhibit good mechanical properties.The flexural strength can reach up to 160 MPa,and the impact strength can reach 2.5 kJ.m^(-2).The C/C-SiC brake composites show excellent tribological performances.The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s^(-1).The brake is stable,and the wear rate is less than 2.02×10^(-6) cm^3·J^(-1).These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. 展开更多
关键词 C/C-SIC ceramic matrix composites tribological properties MICROSTRUCTURE
下载PDF
Behavior of pure and modified carbon/carbon composites in atomic oxygen environment
17
作者 Xiao-chong Liu Lai-fei Cheng +2 位作者 Li-tong Zhang Xin-gang Luan Hui Mei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第2期190-195,共6页
Atomic oxygen (AO) is considered the most erosive particle to spacecraft materials in low earth orbit (LEO). Carbon fiber, car-bon/carbon (C/C), and some modified C/C composites were exposed to a simulated AO en... Atomic oxygen (AO) is considered the most erosive particle to spacecraft materials in low earth orbit (LEO). Carbon fiber, car-bon/carbon (C/C), and some modified C/C composites were exposed to a simulated AO environment to investigate their behaviors in LEO. Scanning electron microscopy (SEM), AO erosion rate calculation, and mechanical property testing were used to characterize the material properties. Results show that the carbon fiber and C/C specimens undergo significant degradation under the AO bombing. According to the effects of AO on C/C-SiC and CVD-SiC-coated C/C, a condensed CVD-SiC coat is a feasible approach to protect C/C composites from AO degradation. 展开更多
关键词 atomic oxygen OXIDATION carbon/carbon composites ceramic matrix composites
下载PDF
Mechanical Behavior and Microstructure Characterization of 3D Stitched Quartz Fibers-reinforced Silica Composites
18
作者 轩立新 LIU Yong 陈照峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期5-8,共4页
The mechanical properties of silica material in the monolithic form are ;far from acceptable levels. In this paper, 3D stitched quartz preform was used for the fiber reinforcement, and quartz fibers- reinforced silica... The mechanical properties of silica material in the monolithic form are ;far from acceptable levels. In this paper, 3D stitched quartz preform was used for the fiber reinforcement, and quartz fibers- reinforced silica composites were prepared by the silica sol-infiltration-sintering method. The density of the composite was up to 1.71 g/cm3 after 10 infiltration-sintering cycles. The flexural strength and the in-plane shear strength were 61.7 MPa and 20.3 MPa, respectively. The flexural stress-deflection curve exhibited mostly nonlinear behavior, which was different from that of monolithic ceramics. Because of the existence of the fiber in Z axis direction, shearing property between the different layers of 3D stitched composites were greatly enhanced. Toughness effect of the 3D stitched quartz preform was conspicuous. The as-fabricated composites showed non-catastronhic failure behavior resulting from weak fiber/matrix interface. 展开更多
关键词 3D stitched preform ceramic matrix composites MICROSTRUCTURE mechanical behavior
下载PDF
The multiscale modeling and data mining of high-temperature dielectrics of SiO_2/SiO_2 composites
19
作者 袁杰 崔超 +1 位作者 侯志灵 曹茂盛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期202-205,共4页
The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on ... The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on the theory of dielectrics. It was realized to predict dielectric properties at higher temperature ( 〉 1200 ℃) by experimental data mining for correlative coefficients in model. The results show that the dielectrics of SiO2/SiO2, which were calculated with the theoretical model, were in agreement with experimental measured value. 展开更多
关键词 multiscale modeling data mining high-temperature dielectric properties ceramic matrix composites
下载PDF
Influences of Mechanical Vibration on Rapidly Solidified Al_2O_3/YSZ Ceramics Prepared by Combustion Synthesis
20
作者 ZHAO Zhong-min ZHANG Long +1 位作者 WANG Wei-guo ZHANG Shi-yue 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期27-30,共4页
Al2O3/YSZ composite ceramics was fabricated with combustion synthesis technology, and the influences of mechanical vibration on its microstructures and properties were investigated. It is found that under the mechanic... Al2O3/YSZ composite ceramics was fabricated with combustion synthesis technology, and the influences of mechanical vibration on its microstructures and properties were investigated. It is found that under the mechanical vibration of ever-increasing frequency, increasing combustion temperature, accelerating ceramics/metal liquid-liquid separation and quickening ceramic solidification could not only reduce the average diameter and the size distribution of aligned ZrO2 nano-micron fibers in rod-shaped Al2O3 matrix grains, but also make the randomly-oriented rod-shaped grains finer and increase their aspect ratios. As a result, a remarkable increase in flexural strength and fracture toughness of the ceramics can be observed. 展开更多
关键词 ceramic matrix composite combustion synthesis rapid solidification nanocrystalline microstructure mechanical vibration
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部