Sulfhydryl magnetic biological bamboo charcoal nanocomposite(BBC@nFe-SH)was prepared by chemical co-precipitation method for the robust capture of As(Ⅲ)from aqueous solutions.The novel BBC@nFe-SH shows favorable magn...Sulfhydryl magnetic biological bamboo charcoal nanocomposite(BBC@nFe-SH)was prepared by chemical co-precipitation method for the robust capture of As(Ⅲ)from aqueous solutions.The novel BBC@nFe-SH shows favorable magnetic field strength(83376 A/m),which enables BBC@nFe-SH to be quickly recovered from aqueous solution.The maximum As(Ⅲ)adsorption capacity is as high as 98.63 mg/g at pH 5.0 and 40°C,reaching reaction equilibrium within 120 min.Various characterizations(e.g.,SEM,FTIR,VSM and XPS)suggest that As(Ⅲ)prefers to coordinate with surface oxygen groups bonded to the surface.BBC@nFe-SH displayed high stability and recyclability throughout the removal process,which could be easily activated by 1 mol/L NaOH after usage.Thus,the novel BBC@nFe-SH has promising applications for As(Ⅲ)treatment.展开更多
Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The b...Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The bimodal distribution can be effectively eliminated by an improved chemical co-precipitation method,in which the cationic surfactant cetyltrimethyl-ammonium bromide(CTAB)was innovatively employed.The reduced powders with excellent uniformity have an average grain size of only~31.5 nm.It is noteworthy that Y_(2)O_(3)particles would fuse and grow with the growth of W grains during subsequent spark plasma sintering(SPS)process,which was rarely reported in relevant literature before.On top of that,phase interfaces of sintered W-Y_(2)O_(3)alloys were systematically analyzed.Compared to the intracrystalline oxygen content,the oxygen content at W/Y_(2)O_(3)phase boundaries is relatively higher.It can be found that the(110)crystal planes of W form coherent,semi-coherent,and non-coherent interfaces with different crystal planes of Y_(2)O_(3).The weak interfacial bonding strength between W and Y_(2)O_(3)phases results from relatively more oxygen impurities as well as more semi-coherent/non-coherent interfaces at phase boundaries compared with the inner W grains.展开更多
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc...The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.展开更多
The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM)...The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xfe2O4 while in the reactor and show definite magnetism, which can solve the difficult issue in washing process effectively. When calcined beneath 450 ℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300 ℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation.展开更多
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e...In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.展开更多
Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that...Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality.展开更多
To address the serious pollution of heavy metals in AMD,the difficulty and the high cost of treatment,Fe_(3)O_(4)-L was prepared by the chemical co-precipitation method.Based on the single-factor and RSM,the effects o...To address the serious pollution of heavy metals in AMD,the difficulty and the high cost of treatment,Fe_(3)O_(4)-L was prepared by the chemical co-precipitation method.Based on the single-factor and RSM,the effects of particle size,total Fe concentration,the molar ratio of Fe^(2+)to Fe^(3+)and water bath temperature on the removal of AMD by Fe_(3)O_(4)-L prepared by chemical co-precipitation method were analyzed.Static adsorption experiments were conducted on Cu^(2+),Zn^(2+)and Pb^(2+)using Fe_(3)O_(4)-L prepared under optimal conditions as adsorbents.The adsorption properties and mechanisms were analyzed by combining SEM-EDS,XRD and FTIR for characterization.The study showed that the effects of particle size,total Fe concentration and the molar ratio of Fe^(2+)to Fe^(3+)are larger.Obtained by response surface optimization analysis,the optimum conditions for the preparation of Fe_(3)O_(4)-L were a particle size of 250 mesh,a total Fe concentration of 0.5 mol/L,and a molar ratio of Fe^(2+)to Fe^(3+)of 1:2.Under these conditions,the removal rates of Cu^(2+),Zn^(2+),and Pb^(2+)were 94.52%,88.49%,and 96.69%respectively.The adsorption of Cu^(2+),Zn^(2+)and Pb^(2+)by Fe_(3)O_(4)-L prepared under optimal conditions reached equilibrium at 180 min,with removal rates of 99.99%,85.27%,and 97.48%,respectively.The adsorption reaction of Fe_(3)O_(4)-L for Cu^(2+)and Zn^(2+)is endothermic,while that for Pb^(2+)is exothermic.Fe_(3)O_(4)-L can still maintain a high adsorption capacity after five cycles of adsorption-desorption experiments.Cu^(2+),Zn^(2+)and Pb^(2+)mainly exist as CuFe_(2)O_(4),Zn(OH)2,ZnFe_(2)O_(4)and PbS after being adsorbed by Fe_(3)O_(4)-L,which is the result of the combination of physical diffusion,ion exchange and surface complexation reaction.展开更多
The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase struc...The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase structure, grain size, surface morphology, and luminescent properties of phosphors were investigated by X-ray diffraction, scanning electron microscope, trans-mission electron microscope, and fluorescence spectrum. The results show that the product of precursor annealed at 1,100 ℃ is Sr2(P2O7):Ce,Tb, which belongs to ortho-rhombic phase. The powder is spherical and the size dis-tribution is in micron grade. The sample with the molar ratio of Sr/Tb/Ce of 100.0:0.4:0.6 shows the best fluores-cence effect annealed at 1,100 ℃ for 3 h. The phosphors produce green fluorescence by being excitated with ultra-violet radiation of 254 nm wavelength, and the main emission peak is at 547 nm. The Sr2(P2O7):Ce,Tb phos-phors synthesized by co-precipitation method of precursors at ambient temperature is a kind of efficient green-emitting phosphors.展开更多
Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 p...Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.展开更多
The exotic species Spartina alterniflora(S.alterniflora)seriously threatens the stability and functioning of saltmarsh ecosystems in the Yangtze Estuary.Ambitious efforts have been undertaken to control this species,b...The exotic species Spartina alterniflora(S.alterniflora)seriously threatens the stability and functioning of saltmarsh ecosystems in the Yangtze Estuary.Ambitious efforts have been undertaken to control this species,but subsequent re-invasion is frequent,presenting a significant barrier to restoration.The complexity and high cost of integrated physical control programs has necessitated a shift in focus,leading to considerable attention being paid to the potential of herbicides to control S.alterniflora.To find a strategy for emergency control of small and scattered patches of re-invading S.alterniflora,an in situ field experiment using Gallant(Haloxyfop-R-methyl)herbicide was conducted.The growth parameters of plant density and height were used to evaluate the control efficiency of different treatment dosages and times and sediment samples were taken for environmental toxicity analysis.The results show the following:(1)the control efficacy of the maximum proposed application dose(2.70 g/m2)was 92%for continuous swards and 100%for small patches,while those of other dosages(0.45 g/m2,0.90 g/m2,and 1.35 g/m2)were lower than 40%;(2)the appropriate implementation time was July to August with 100%mortality resulting from a single application,while S.alterniflora was shown to be capable of recovering rapidly after treatment in May;and(3)there were no significant differences in the community structure of meiofauna among the herbicide treatments and the control,and no herbicide residues were detected in sediment samples collected from treatment areas.This chemical control method was implemented in the Shanghai Chongming Dongtan National Bird Nature Reserve(CDNR).The results of this study indicate that Gallant is an environmentally friendly herbicide with high efficiency,which can be adopted for emergency control of re-invading S.alterniflora.展开更多
We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. The...We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.展开更多
A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachlor...A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.展开更多
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi...Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.展开更多
In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the...In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the precursor was then sintered at different temperatures.The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction.The YSGG precursor and the powders sintered at different temperatures were characterized by IR,XRD and TEM methods.It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃.YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm.展开更多
In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization ...In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed so...Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8.展开更多
Since ultraviolet(UV)light,as well as blue light,which is part of visible light,is harmful to skin,samarium-cerium compounds containing Sm_(2)O_(2)S were synthesized by co-precipitation method.This kind of compounds b...Since ultraviolet(UV)light,as well as blue light,which is part of visible light,is harmful to skin,samarium-cerium compounds containing Sm_(2)O_(2)S were synthesized by co-precipitation method.This kind of compounds blocks not only UV light,but also blue light.The minimum values of average transmittance(360-450 nm)and band gap of samarium-cerium compounds were 8.90%and 2.76 eV,respectively,which were less than 13.96%and 3.01 eV of CeO_(2).Elemental analysis(EA),X-ray diffraction(XRD),Fourier transformation infrared(FTIR),and Raman spectra determined that the samples contained Ce_(4)O_(7),Sm_(2)O_(2)S,Sm_(2)O_(3),and Sm_(2)O_(2)SO_(4).The microstructure of samples was analyzed by scanning and transmission electron microscopies(SEM and TEM).X-ray photoelectron spectrum(XPS)showed that cerium had Ce^(3+)and Ce^(4+) valence states,and oxygen was divided into lattice oxygen and oxygen vacancy,which was the direct cause of the decrease of average transmittance and band gap.展开更多
SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microsc...SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns presented that the all the as-prepared materials had tetragonal rutile structure but a second phase (Y2O3) was observed when Y content reached 4%. TEM micrograph indicated that Y doped SnO2 had a small particle size ranging from 20 to 25 nm. The electrochemical properties for an anode active material in lithium-ion batteries were investigated at room temperature, including the observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge-discharge cycles. The as-prepared Y-doped SnO2 exhibited promising electrochemical properties as anodes for lithium-ion batteries.展开更多
The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the b...The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the bottom water, and the charging rate on the physical properties, such as particle size, were investigated. It is found that the particle size of the powder is controllable by adjusting acidity in bottom water and charging rate. The powder with diameter size of 3 to 5μm was obtained. Its XRD and SEM were analyzed. XRD patterns of the as-prepared green phosphor powders display the typical peaks of CePO4. SEM shows that the morphology of powders is ball-shaped.展开更多
In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples...In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.展开更多
基金financial support from the Key Research and Development Program of Hunan Province,China (No.2021GK4059)。
文摘Sulfhydryl magnetic biological bamboo charcoal nanocomposite(BBC@nFe-SH)was prepared by chemical co-precipitation method for the robust capture of As(Ⅲ)from aqueous solutions.The novel BBC@nFe-SH shows favorable magnetic field strength(83376 A/m),which enables BBC@nFe-SH to be quickly recovered from aqueous solution.The maximum As(Ⅲ)adsorption capacity is as high as 98.63 mg/g at pH 5.0 and 40°C,reaching reaction equilibrium within 120 min.Various characterizations(e.g.,SEM,FTIR,VSM and XPS)suggest that As(Ⅲ)prefers to coordinate with surface oxygen groups bonded to the surface.BBC@nFe-SH displayed high stability and recyclability throughout the removal process,which could be easily activated by 1 mol/L NaOH after usage.Thus,the novel BBC@nFe-SH has promising applications for As(Ⅲ)treatment.
基金the National Natural Science Foundation of China(Grant Nos.51822404 and 51574178)the Science and Technology Program of Tianjin(Grant No.18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(Grant No.18JCYBJC17900)the Seed Foundation of Tianjin University(Grant Nos.2018XRX-0005 and 2019XYF-0066).
文摘Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The bimodal distribution can be effectively eliminated by an improved chemical co-precipitation method,in which the cationic surfactant cetyltrimethyl-ammonium bromide(CTAB)was innovatively employed.The reduced powders with excellent uniformity have an average grain size of only~31.5 nm.It is noteworthy that Y_(2)O_(3)particles would fuse and grow with the growth of W grains during subsequent spark plasma sintering(SPS)process,which was rarely reported in relevant literature before.On top of that,phase interfaces of sintered W-Y_(2)O_(3)alloys were systematically analyzed.Compared to the intracrystalline oxygen content,the oxygen content at W/Y_(2)O_(3)phase boundaries is relatively higher.It can be found that the(110)crystal planes of W form coherent,semi-coherent,and non-coherent interfaces with different crystal planes of Y_(2)O_(3).The weak interfacial bonding strength between W and Y_(2)O_(3)phases results from relatively more oxygen impurities as well as more semi-coherent/non-coherent interfaces at phase boundaries compared with the inner W grains.
基金financially supported by the Natural Science Foundation of Guangxi Province, China (No. GKZ0832256)
文摘The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.
基金Funded by the National Natural Science Foundation of China(Nos.51162019 and 51462019)
文摘The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xfe2O4 while in the reactor and show definite magnetism, which can solve the difficult issue in washing process effectively. When calcined beneath 450 ℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300 ℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation.
基金supported by the NSF under Grant DMS-1818467Simons Foundation under Grant 961585.
文摘In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.
文摘Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality.
基金This work was supported by the National Natural Science Foundation of China(41672247)Liaoning Province’s“Program for Promoting Liaoning Talents”(XLYC1807159)+1 种基金the Discipline Innovation Team of Liaoning Technical University(LNTU20TD-21)the Liaoning Provincial Department of Education(LJKZ0324).
文摘To address the serious pollution of heavy metals in AMD,the difficulty and the high cost of treatment,Fe_(3)O_(4)-L was prepared by the chemical co-precipitation method.Based on the single-factor and RSM,the effects of particle size,total Fe concentration,the molar ratio of Fe^(2+)to Fe^(3+)and water bath temperature on the removal of AMD by Fe_(3)O_(4)-L prepared by chemical co-precipitation method were analyzed.Static adsorption experiments were conducted on Cu^(2+),Zn^(2+)and Pb^(2+)using Fe_(3)O_(4)-L prepared under optimal conditions as adsorbents.The adsorption properties and mechanisms were analyzed by combining SEM-EDS,XRD and FTIR for characterization.The study showed that the effects of particle size,total Fe concentration and the molar ratio of Fe^(2+)to Fe^(3+)are larger.Obtained by response surface optimization analysis,the optimum conditions for the preparation of Fe_(3)O_(4)-L were a particle size of 250 mesh,a total Fe concentration of 0.5 mol/L,and a molar ratio of Fe^(2+)to Fe^(3+)of 1:2.Under these conditions,the removal rates of Cu^(2+),Zn^(2+),and Pb^(2+)were 94.52%,88.49%,and 96.69%respectively.The adsorption of Cu^(2+),Zn^(2+)and Pb^(2+)by Fe_(3)O_(4)-L prepared under optimal conditions reached equilibrium at 180 min,with removal rates of 99.99%,85.27%,and 97.48%,respectively.The adsorption reaction of Fe_(3)O_(4)-L for Cu^(2+)and Zn^(2+)is endothermic,while that for Pb^(2+)is exothermic.Fe_(3)O_(4)-L can still maintain a high adsorption capacity after five cycles of adsorption-desorption experiments.Cu^(2+),Zn^(2+)and Pb^(2+)mainly exist as CuFe_(2)O_(4),Zn(OH)2,ZnFe_(2)O_(4)and PbS after being adsorbed by Fe_(3)O_(4)-L,which is the result of the combination of physical diffusion,ion exchange and surface complexation reaction.
基金financially supported by the National Natural Science Foundation of China(No.21273060)the Program for New Century Excellent Talents in Heilongjiang Provincial University(No.1251-NCET-014)
文摘The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase structure, grain size, surface morphology, and luminescent properties of phosphors were investigated by X-ray diffraction, scanning electron microscope, trans-mission electron microscope, and fluorescence spectrum. The results show that the product of precursor annealed at 1,100 ℃ is Sr2(P2O7):Ce,Tb, which belongs to ortho-rhombic phase. The powder is spherical and the size dis-tribution is in micron grade. The sample with the molar ratio of Sr/Tb/Ce of 100.0:0.4:0.6 shows the best fluores-cence effect annealed at 1,100 ℃ for 3 h. The phosphors produce green fluorescence by being excitated with ultra-violet radiation of 254 nm wavelength, and the main emission peak is at 547 nm. The Sr2(P2O7):Ce,Tb phos-phors synthesized by co-precipitation method of precursors at ambient temperature is a kind of efficient green-emitting phosphors.
基金Project supported by the International Cooperation of Science and Technology Ministry PRC (2005DFBA028)the National Natural Science Foundation of China (59925412)
文摘Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC1201100)the National Natural Science Foundation of China(Grant No.41876093)the Scientific Research Project of the Shanghai Science and Technology Committee(Grants No.17DZ1201902,18DZ1206506,and 18DZ1204802).
文摘The exotic species Spartina alterniflora(S.alterniflora)seriously threatens the stability and functioning of saltmarsh ecosystems in the Yangtze Estuary.Ambitious efforts have been undertaken to control this species,but subsequent re-invasion is frequent,presenting a significant barrier to restoration.The complexity and high cost of integrated physical control programs has necessitated a shift in focus,leading to considerable attention being paid to the potential of herbicides to control S.alterniflora.To find a strategy for emergency control of small and scattered patches of re-invading S.alterniflora,an in situ field experiment using Gallant(Haloxyfop-R-methyl)herbicide was conducted.The growth parameters of plant density and height were used to evaluate the control efficiency of different treatment dosages and times and sediment samples were taken for environmental toxicity analysis.The results show the following:(1)the control efficacy of the maximum proposed application dose(2.70 g/m2)was 92%for continuous swards and 100%for small patches,while those of other dosages(0.45 g/m2,0.90 g/m2,and 1.35 g/m2)were lower than 40%;(2)the appropriate implementation time was July to August with 100%mortality resulting from a single application,while S.alterniflora was shown to be capable of recovering rapidly after treatment in May;and(3)there were no significant differences in the community structure of meiofauna among the herbicide treatments and the control,and no herbicide residues were detected in sediment samples collected from treatment areas.This chemical control method was implemented in the Shanghai Chongming Dongtan National Bird Nature Reserve(CDNR).The results of this study indicate that Gallant is an environmentally friendly herbicide with high efficiency,which can be adopted for emergency control of re-invading S.alterniflora.
文摘We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.
文摘A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.
文摘Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.
基金Project supported by the National Natural Science Foundation of China(5047210460478025)
文摘In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the precursor was then sintered at different temperatures.The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction.The YSGG precursor and the powders sintered at different temperatures were characterized by IR,XRD and TEM methods.It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃.YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm.
基金the R&D project, titled " Creating a Marine Clay Matrix with Incineration Bottom Ash (IBA) for Land Reclamation " (Wu et al., 2014), under the Innovation for Environmental Sustainability (IES) Fund from National Environment Agency (NEA) of Singapore (ETO/CF/3/1)
文摘In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Funded by the Basic Key Project in Shanghai City (06JC14033)the Key Discipline Construction Fund in Shanghai City (P1304)
文摘Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8.
基金financially supported by the Major State Basic Research Development Program of China(973 Program)(No.2012CBA01205)the National Natural Science Foundation of China(No.51274060)。
文摘Since ultraviolet(UV)light,as well as blue light,which is part of visible light,is harmful to skin,samarium-cerium compounds containing Sm_(2)O_(2)S were synthesized by co-precipitation method.This kind of compounds blocks not only UV light,but also blue light.The minimum values of average transmittance(360-450 nm)and band gap of samarium-cerium compounds were 8.90%and 2.76 eV,respectively,which were less than 13.96%and 3.01 eV of CeO_(2).Elemental analysis(EA),X-ray diffraction(XRD),Fourier transformation infrared(FTIR),and Raman spectra determined that the samples contained Ce_(4)O_(7),Sm_(2)O_(2)S,Sm_(2)O_(3),and Sm_(2)O_(2)SO_(4).The microstructure of samples was analyzed by scanning and transmission electron microscopies(SEM and TEM).X-ray photoelectron spectrum(XPS)showed that cerium had Ce^(3+)and Ce^(4+) valence states,and oxygen was divided into lattice oxygen and oxygen vacancy,which was the direct cause of the decrease of average transmittance and band gap.
基金NSFC (20471055)Henan Outstanding Youth Science Fund (0612002700)
文摘SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns presented that the all the as-prepared materials had tetragonal rutile structure but a second phase (Y2O3) was observed when Y content reached 4%. TEM micrograph indicated that Y doped SnO2 had a small particle size ranging from 20 to 25 nm. The electrochemical properties for an anode active material in lithium-ion batteries were investigated at room temperature, including the observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge-discharge cycles. The as-prepared Y-doped SnO2 exhibited promising electrochemical properties as anodes for lithium-ion batteries.
基金Rare Earth Special Project supported by National Development and Reform Commission
文摘The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the bottom water, and the charging rate on the physical properties, such as particle size, were investigated. It is found that the particle size of the powder is controllable by adjusting acidity in bottom water and charging rate. The powder with diameter size of 3 to 5μm was obtained. Its XRD and SEM were analyzed. XRD patterns of the as-prepared green phosphor powders display the typical peaks of CePO4. SEM shows that the morphology of powders is ball-shaped.
基金Supported by the Natural Basic Research Program of China(No.2005CB422207)the Fund of Eco-enviromental Impacts and Protection in Devoloping and Utilizing of Oil-shale Resources(No.OSR-01-06)
文摘In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.