Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3P...Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.展开更多
The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chloroben...The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chlorobenzenesulfinic acid to form the target product, 2-nitro-4-(β- hydroxyethylsulfonyl)chlorobenzene, there presented three kinds of side reactions: 1. Condensation and elimination of HCI to form biphenyl sulfone derivatives; 2. Addition to give bisulfonyl ethane derivative via vinyl sulfone; and 3. Hydroxylethylation on O-atom to produce hydroxylethylsulfinate due to the tautomerism of sulfinic acid.展开更多
This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis.The effects of current density,pH,and electrolyte concentratio...This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis.The effects of current density,pH,and electrolyte concentration on CB degradation were determined.The degradation effciency of CB was almost 100% with an initial CB concentration of 50 mg/L,current density 15 mA/cm2,initial pH 10,electrolyte concentration 0.1 mol/L,and temperature 25°C after 90 min of reaction.Under the same conditions,the degradation eff...展开更多
Objective To evaluate the effect of white rot fungus Phanerochaete chrysosporium on removal of gaseous chlorobenzene. Methods Fungal mycelium mixed with a liquid medium was placed into airtight bottles. A certain amou...Objective To evaluate the effect of white rot fungus Phanerochaete chrysosporium on removal of gaseous chlorobenzene. Methods Fungal mycelium mixed with a liquid medium was placed into airtight bottles. A certain amount of chlorobenzene was injected into the headspace of the bottles under different conditions. At a certain interval, the concentrations in the headspace were analyzed to evaluate the degradation of chlorobenzene by P. chrysosporium. Results The degradation effects of P. chrysosporium on chlorobenzene under different conditions were investigated. The difference in the optimum temperature for the growth of the fungi and chlorobenzene degradation was observed. The data indicated that a lower temperature (28℃) would promote the degradation of chlorobenzene than the optimum temperature for the growth of the fungi (37℃). A low nitrogen source concentration (30 mg N/L) had a better effect on degrading chlorobenzene than a high nitrogen source concentration (higher than 100 mg N/L). A high initial concentration (over 1100 mg/m3) of chlorobenzene showed an inhibiting effect on degradation by P chrysosporium. A maximum removal efficiency of 95% was achieved at the initial concentration of 550 mg/m3. Conclusion P. chrysosporium has a rather good ability to remove gaseous chlorobeuzene. A low nitrogen source concentration and a low temperature promote the removal of chlorobenzene by P. chrysosporium. However, a high initial chlorobenzene concentration can inhibit chlorobenzene degradation.展开更多
MCM-41 was synthesized by a soft template technique.The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g,respectively.MCM-41-supported manganese and cobalt oxide catalysts were prepa...MCM-41 was synthesized by a soft template technique.The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g,respectively.MCM-41-supported manganese and cobalt oxide catalysts were prepared by an impregnation method.The energy dispersive X-ray spectroscopy clearly confirmed the existence of Mn,Co,and O,which indicated the successful loading of the active components on the surface of MCM-41.The structure and function of the catalysts were changed by modulating the molar ratio of manganese to cobalt.The 10%MnCo(6:1)/MCM-41(Mn/Co molar ratio is 6:1)catalyst displayed the best catalytic activity according to the activity evaluation experiments,and chlorobenzene(1000 ppm)was totally decomposed at 270°C.The high activity correlated with a high dispersion of the oxides and was attributed to the exposure of more active sites,which was demonstrated by X-ray diffraction and high-resolution transmission electron microscopy.The strong interactions between MnO2,Co3O4,MnCoOx,and MCM-41 indicated that cobalt promoted the redox cycles of the manganese system.The bimetal-oxide-based catalyst showed better catalytic activity than that of the single metal oxide catalysts,which was further confirmed by H2 temperature-programmed reduction.Chlorobenzene temperature-programmed desorption results showed that 10%MnCo(6:1)/MCM-41 had higher adsorption strength for chlorobenzene than that of single metal catalysts.And stronger adsorption was beneficial for combustion of chlorobenzene.Furthermore,10%MnCo(6:1)/MCM-41 was not deactivated during a continuous reaction for 1000 h at 260°C and displayed good resistance to water and benzene,which indicated that the catalyst could be used in a wide range of applications.展开更多
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentr...The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (ZCBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ZCBs in waterweeds ranged from 13.53×10^2μg/g to 38.27×10^2μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs (DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County 〈 Yunan County 〈 Yun'an County 〈 Gaoyao County according to the ZCBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River .展开更多
The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separati...The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.展开更多
Chlorobenzene was dechlorinated by Pd/Fe bimetallic system in water through catalytic reduction. The dechlorination rate increases with increase of bulk loading of Pd due to the increase of both the surface loading o...Chlorobenzene was dechlorinated by Pd/Fe bimetallic system in water through catalytic reduction. The dechlorination rate increases with increase of bulk loading of Pd due to the increase of both the surface loading of the Pd and the total surface area. For conditions with 0.005% Pd/Fe, 45% dechlorination efficiency was achieved within 5 h. The dechlorinated reaction is believed to take place on the bimetal surface in a pseudo-first-order reaction, with the rate constant being 0.0043 min-1.展开更多
Catalytic reductive dechlorination of monochlorobenzene(MCB) was carried out in the palladium/iron system. With low Pd loading(0 005%), 45% dechlorination efficiency was achieved within 5 h. Pd as catalyst accelerated...Catalytic reductive dechlorination of monochlorobenzene(MCB) was carried out in the palladium/iron system. With low Pd loading(0 005%), 45% dechlorination efficiency was achieved within 5 h. Pd as catalyst accelerated the reductive dechlorination reaction. Dechlorination mechanism and kinetics were discussed. The reaction took place on the bimetal surface in a pseudo first order reaction, with the rate constant being 0 0071 min -1 ( K SA =8 0×10 -3 L/(m 2·h). The reduction product for MCB was benzene.展开更多
This study investigated the electrokinetic (EK) behavior of multiple chlorobenzenes, including 1,2,3,4-tetrachlorobenzene (TeCB), 1,2,4,5-tetrachlorobenzene (i-TeCB), and 1,2,3-trichlorobenzene (TCB) in contam...This study investigated the electrokinetic (EK) behavior of multiple chlorobenzenes, including 1,2,3,4-tetrachlorobenzene (TeCB), 1,2,4,5-tetrachlorobenzene (i-TeCB), and 1,2,3-trichlorobenzene (TCB) in contaminated clayed soils. The effect of β-cyclodextrin (β- CD) on the EK removal of the chlorobenzenes was studied. The largest removal was obtained when Na2CO3/NaHCO3 buffer was used as anodic purging solution without β-CD. The removal efficiencies were related to the aqueous solubilities of chlorobenzenes. With the same cumulative electroosmotic flow, greater solubility led to higher removal efficiency. The addition of β-CD inhibited the EK removal efficiency of all chlorobenzenes. The inhibition increased with the increase of β-CD concentration. With the same β-CD concentration, the inhibition increased with the rise of electric potential. It was found that the inclusion compounds between β-CD and chlorobenzenzes were less soluble than chlorobenzenes. The formation of the less soluble inclusion compounds reduced the aqueous solubility of chlorobenzenes and led to the partial immobilization of the chlorobenzenes that desorbed from soil. It was feasible to use the EK technology to remove chlorobenzenes in contaminated soils using water as the anodic flushing solution. The addition of β-CD was not recommended for the EK removal of chlorobenzenes.展开更多
A laboratory-scale trickling biofilter column, filled with Raschig rings and inoculated with Pseudomonas putida (ATCC 1785) was used to 'purify chlorobenzene contained waste gases. Sodium dodecyl sulfonate (SDS) ...A laboratory-scale trickling biofilter column, filled with Raschig rings and inoculated with Pseudomonas putida (ATCC 1785) was used to 'purify chlorobenzene contained waste gases. Sodium dodecyl sulfonate (SDS) was used to enhance the performance of trickling biofilter. Purification performance of the trickling biofilter was examined for chiorobenzene inlet concentration of 1.20,-5.04 g/m^3 at different EBRTs between 76N153 s. Without SDS addition, with simultaneous increase in chlorobenzene inlet loading rate and gas flow rate, 100% removal efficiency was achieved at EBRT of 109 s and inlet loadings below 5120 mg/m^3. Addition of SDS to nutrient solution led to improvement of trickling biofilter purification performance. By introducing 25 mg/L SDS, the removal efficiency was increased by 21% and elimination capacity up to 234 g/(m^3.h) was achieved at chlorobenzene inlet loading of 241 g/(m^3.h). Although SDS concentration experienced a low rate reduction after continuous nutrient solution recirculation, this result has period little influence on trickling biofilter's removal efficiency in monitoring period.展开更多
Paratungstate-loaded titania catalysts were prepared %via% the addition of a series of aqueous solutions of paratungstate(denoted as W_ 7) into an isopropanol solution of Ti[OCH(CH_ 3)_ 2]_ 4 by means of the sol-gel m...Paratungstate-loaded titania catalysts were prepared %via% the addition of a series of aqueous solutions of paratungstate(denoted as W_ 7) into an isopropanol solution of Ti[OCH(CH_ 3)_ 2]_ 4 by means of the sol-gel method. The catalysts were characterized by EDX, BET, FTIR, UV-Vis DRS, XRD and the results indicate that such paratungstate-loaded catalysts maintained their heptatungstate structure in the anatase titania matrix up to 400 ℃. The catalysts were tested for the heterogeneous photodegradation of chlorobenzene in aqueous media and showed a better catalytic activity than P-25 TiO_ 2 because paratungstate can prevent the recombination of the holes and electrons produced during irradiation. Moreover, the paratungstate-loaded titania catalysts can resist the disaggregation during the photoirradiation and can be easily recycled from the aqueous suspensions after reactions.展开更多
Isobaric vapor-liquid equilibrium(VLE) data for three binary systems, chlorobenzene + N,N-dimethylformamide, chlorobenzene + furfural, and chlorobenzene + benzaldehyde, were measured at 50.00 and 101.33 kPa using a mo...Isobaric vapor-liquid equilibrium(VLE) data for three binary systems, chlorobenzene + N,N-dimethylformamide, chlorobenzene + furfural, and chlorobenzene + benzaldehyde, were measured at 50.00 and 101.33 kPa using a modified Rose-Williams still. Gas chromatography was used to analyze the compositions of the samples and no azeotropic behavior was found. All of the measured VLE values were checked by the semi-empirical method proposed by Herington and the point-to-point Van Ness test method modified by Fredenslund. The experimental data were correlated by using the Wilson, the non-random two-liquid and universal quasi-chemical activity coefficient models. The corresponding parameters for the three models were obtained.展开更多
[ Objective] The research aimed to study the effect of underground temperature on the adsorption behavior of chlorobenzene under artifi- cial recharge condition. [ Method] Based on the prior researches, combining actu...[ Objective] The research aimed to study the effect of underground temperature on the adsorption behavior of chlorobenzene under artifi- cial recharge condition. [ Method] Based on the prior researches, combining actual condition of the artificial recharge test site, the adsorption be- havior of chlorobenzene under the background of artificial recharge was discussed. [ Reset ] The adsorption reaction of chlorobenzene correspon- ded with quasi-first-order and quasi-second-order kinetics equations at certain concentration. When temperature rose, reaction rate accelerated, and adsorption balance time shortened to 12 (0 ℃), 10 (10 ℃) and 8 (20 ℃) h. The adsorption of chlorobenzene corresponded with isothermal adsorption model very well at different concentrations. When temperature ranged from 0 to 20 ℃, the adsorption amount of medium on chloroben- zene increased at equilibrium time. The maximal adsorption amounts calculated by Langmuir model were 20.747, 21. 505, 23.364 μg/g at 0, 10 and 20 ℃, respectively. [ Conclusion] The adsorption of chlorobenzene in aquifer medium was endothermic reaction, and the best season of artifi- cial recharne was in summer.展开更多
Non-thermal plasma(NTP)is considered to be a promising technology for the removal of volatile organic compounds;however,its application is limited by low CO_(2) selectivity and undesirable by-products.To overcome thes...Non-thermal plasma(NTP)is considered to be a promising technology for the removal of volatile organic compounds;however,its application is limited by low CO_(2) selectivity and undesirable by-products.To overcome these issues,this paper discusses the degradation of chlorobenzene(CB)in systems of NTP coupled with catalysts,and the influence of catalyst locations in the NTP was investigated.In addition,the interaction between plasma and catalyst was also explored.The results indicated that the degradability of CB was remarkably improved through the combination of NTP with catalysts,and the formation of ozone was effectively inhibited.The degradation efficiency increased from 33.9%to 79.6%at 14 kV in the NTPcatalytic system,while the ozone concentration decreased from 437 to 237 mg m^(-3),and the degradation efficiency of in plasma catalysis(IPC)systems was superior to that of the post plasma catalysis system,while the inhibition ability of ozone exhibited an opposing trend.In the IPC system,the degradation efficiency was 87.7%at 14 k V,while the ozone concentration was151 mg m^(-3).Besides,the plasma did not destroy the pore structure and crystal structure of the catalyst,but affected the surface morphology and redox performance of the catalyst.Thus,NTP coupled catalytic system could improve the degradation performance of CB.Furthermore,the plasma discharge characteristics played a major role in the NTP synergistic catalytic degradation of CB.Finally,based on the experiment analysis results,the general reaction mechanism of CB degradation in an IPC reaction system was proposed.展开更多
Carbon dioxide fixation technique was developed as an alternative dechlorination method of chlorobenzenes. Electrolysis of chlorobenzene was carried out in a one-compartment cell fitted with an aluminium anode and a p...Carbon dioxide fixation technique was developed as an alternative dechlorination method of chlorobenzenes. Electrolysis of chlorobenzene was carried out in a one-compartment cell fitted with an aluminium anode and a platinum cathode. Electrolysis in N, N-dimethylformamide (DMF) solution containing 0.1 M of tetrapropylammonium bromide (TPAB) at 0 ℃, 100 ml/min of CO2 flow rate and 120 mA/cm^2 of current density was found to be the optimum conditions of this electrocarboxylation, which gave 72% yield of benzoic acid from chlorobenzene. These conditions were then applied to 1,2-dichlorobenzene and 1,3-dichlorobenzene in order to convert them to their corrcsponding benzoic acids.展开更多
In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A ...In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.展开更多
The thermal decomposition of Cyclic Diperoxide of Benzaldehyde 3,6-diphenyl-1,2,4,5-tetroxane, (DFT) in chlorobenzene solution in the studied temperature range (130°C - 166°C) satisfactorily satisfies a firs...The thermal decomposition of Cyclic Diperoxide of Benzaldehyde 3,6-diphenyl-1,2,4,5-tetroxane, (DFT) in chlorobenzene solution in the studied temperature range (130°C - 166°C) satisfactorily satisfies a first order law up to 60% conversions of diperoxide. DFT would decompose through a mechanism in stages and initiated by the homolytic breakdown of one of the peroxidic bonds of the molecule, with the formation of the corresponding intermediate biradical. The concentration studied was very low, so that the effects of secondary reactions of decomposition induced by free radicals originated in the reaction medium can be considered minimal or negligible. The activation parameters for the unimolecular thermal decomposition reaction of the DFT are ΔH# = 30.52 ± 0.3 kcal·mol-1 and ΔS# = -6.38 ± 0.6 cal·mol-1 K-1. The support for a step-by-step mechanism instead of a process concerted is made by comparison with the theoretically calculated activation energy for the thermal decomposition of 1,2,4,5-tetroxane.展开更多
The fluorescence quenching of inclusion complex of neutral red (NR) and hydroxypropyl-β-cyclodextrin (HP-β-CD) carried by chlorobenzene was investigated. The fluorescence intensity of NR increased due to the for...The fluorescence quenching of inclusion complex of neutral red (NR) and hydroxypropyl-β-cyclodextrin (HP-β-CD) carried by chlorobenzene was investigated. The fluorescence intensity of NR increased due to the formed inclusion complex of HP-β-CD and NR. But the fluorescence intensity of NR-HP-β-CD diminished when chlorobenzene was added, and there was a linear relationship between the fluorescence quenching value of the system (△IF = IF, NR-HP-β-CD - IF, CB-NB-NR-HP-β-CD) and the concentration of chlorobenzene. Based on this, a novel fluorescence quenching method for the determination of chlorobenzene with NR as a fluorescence probe has been developed. Under the optimal conditions, the linear range of calibration curve for the determination of chlorobenzene was 5.0 × 10^-8 - 8.0 × 10^-6 mol/L and the detection limit was 1.0 × 10^-8 mol/L. It has been applied to determination ofchlorobenzene in synthetic waste water samples with satisfactory results.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10774039).
文摘Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.
文摘The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chlorobenzenesulfinic acid to form the target product, 2-nitro-4-(β- hydroxyethylsulfonyl)chlorobenzene, there presented three kinds of side reactions: 1. Condensation and elimination of HCI to form biphenyl sulfone derivatives; 2. Addition to give bisulfonyl ethane derivative via vinyl sulfone; and 3. Hydroxylethylation on O-atom to produce hydroxylethylsulfinate due to the tautomerism of sulfinic acid.
基金the Science and Technology Department of Zhejiang Province (No.2006C13120).
文摘This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis.The effects of current density,pH,and electrolyte concentration on CB degradation were determined.The degradation effciency of CB was almost 100% with an initial CB concentration of 50 mg/L,current density 15 mA/cm2,initial pH 10,electrolyte concentration 0.1 mol/L,and temperature 25°C after 90 min of reaction.Under the same conditions,the degradation eff...
基金supported by the Hi-tech Research and Development Program of China (2004AA601061).
文摘Objective To evaluate the effect of white rot fungus Phanerochaete chrysosporium on removal of gaseous chlorobenzene. Methods Fungal mycelium mixed with a liquid medium was placed into airtight bottles. A certain amount of chlorobenzene was injected into the headspace of the bottles under different conditions. At a certain interval, the concentrations in the headspace were analyzed to evaluate the degradation of chlorobenzene by P. chrysosporium. Results The degradation effects of P. chrysosporium on chlorobenzene under different conditions were investigated. The difference in the optimum temperature for the growth of the fungi and chlorobenzene degradation was observed. The data indicated that a lower temperature (28℃) would promote the degradation of chlorobenzene than the optimum temperature for the growth of the fungi (37℃). A low nitrogen source concentration (30 mg N/L) had a better effect on degrading chlorobenzene than a high nitrogen source concentration (higher than 100 mg N/L). A high initial concentration (over 1100 mg/m3) of chlorobenzene showed an inhibiting effect on degradation by P chrysosporium. A maximum removal efficiency of 95% was achieved at the initial concentration of 550 mg/m3. Conclusion P. chrysosporium has a rather good ability to remove gaseous chlorobeuzene. A low nitrogen source concentration and a low temperature promote the removal of chlorobenzene by P. chrysosporium. However, a high initial chlorobenzene concentration can inhibit chlorobenzene degradation.
文摘MCM-41 was synthesized by a soft template technique.The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g,respectively.MCM-41-supported manganese and cobalt oxide catalysts were prepared by an impregnation method.The energy dispersive X-ray spectroscopy clearly confirmed the existence of Mn,Co,and O,which indicated the successful loading of the active components on the surface of MCM-41.The structure and function of the catalysts were changed by modulating the molar ratio of manganese to cobalt.The 10%MnCo(6:1)/MCM-41(Mn/Co molar ratio is 6:1)catalyst displayed the best catalytic activity according to the activity evaluation experiments,and chlorobenzene(1000 ppm)was totally decomposed at 270°C.The high activity correlated with a high dispersion of the oxides and was attributed to the exposure of more active sites,which was demonstrated by X-ray diffraction and high-resolution transmission electron microscopy.The strong interactions between MnO2,Co3O4,MnCoOx,and MCM-41 indicated that cobalt promoted the redox cycles of the manganese system.The bimetal-oxide-based catalyst showed better catalytic activity than that of the single metal oxide catalysts,which was further confirmed by H2 temperature-programmed reduction.Chlorobenzene temperature-programmed desorption results showed that 10%MnCo(6:1)/MCM-41 had higher adsorption strength for chlorobenzene than that of single metal catalysts.And stronger adsorption was beneficial for combustion of chlorobenzene.Furthermore,10%MnCo(6:1)/MCM-41 was not deactivated during a continuous reaction for 1000 h at 260°C and displayed good resistance to water and benzene,which indicated that the catalyst could be used in a wide range of applications.
基金Project supported by the Second Period of"985"Project of Ministry of Education of China (No.32000-3253282).
文摘The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (ZCBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ZCBs in waterweeds ranged from 13.53×10^2μg/g to 38.27×10^2μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs (DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County 〈 Yunan County 〈 Yun'an County 〈 Gaoyao County according to the ZCBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River .
基金Supported by the National Natural Science Foundation of China (61203020, 21276126)the Natural Science Foundation of Jiangsu Province (BK2011795)+1 种基金Jiangsu Province Higher Education Natural Science Foundation (09KJA530004)China Postdoctoral Science Foundation (20100471325)
文摘The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.
文摘Chlorobenzene was dechlorinated by Pd/Fe bimetallic system in water through catalytic reduction. The dechlorination rate increases with increase of bulk loading of Pd due to the increase of both the surface loading of the Pd and the total surface area. For conditions with 0.005% Pd/Fe, 45% dechlorination efficiency was achieved within 5 h. The dechlorinated reaction is believed to take place on the bimetal surface in a pseudo-first-order reaction, with the rate constant being 0.0043 min-1.
文摘Catalytic reductive dechlorination of monochlorobenzene(MCB) was carried out in the palladium/iron system. With low Pd loading(0 005%), 45% dechlorination efficiency was achieved within 5 h. Pd as catalyst accelerated the reductive dechlorination reaction. Dechlorination mechanism and kinetics were discussed. The reaction took place on the bimetal surface in a pseudo first order reaction, with the rate constant being 0 0071 min -1 ( K SA =8 0×10 -3 L/(m 2·h). The reduction product for MCB was benzene.
基金Project supported by the Education Ministry of China(No.104250)the Natural Science Foundation of Hubei Province(No.2006ABD005).
文摘This study investigated the electrokinetic (EK) behavior of multiple chlorobenzenes, including 1,2,3,4-tetrachlorobenzene (TeCB), 1,2,4,5-tetrachlorobenzene (i-TeCB), and 1,2,3-trichlorobenzene (TCB) in contaminated clayed soils. The effect of β-cyclodextrin (β- CD) on the EK removal of the chlorobenzenes was studied. The largest removal was obtained when Na2CO3/NaHCO3 buffer was used as anodic purging solution without β-CD. The removal efficiencies were related to the aqueous solubilities of chlorobenzenes. With the same cumulative electroosmotic flow, greater solubility led to higher removal efficiency. The addition of β-CD inhibited the EK removal efficiency of all chlorobenzenes. The inhibition increased with the increase of β-CD concentration. With the same β-CD concentration, the inhibition increased with the rise of electric potential. It was found that the inclusion compounds between β-CD and chlorobenzenzes were less soluble than chlorobenzenes. The formation of the less soluble inclusion compounds reduced the aqueous solubility of chlorobenzenes and led to the partial immobilization of the chlorobenzenes that desorbed from soil. It was feasible to use the EK technology to remove chlorobenzenes in contaminated soils using water as the anodic flushing solution. The addition of β-CD was not recommended for the EK removal of chlorobenzenes.
基金Project supported by the National Natural Science Foundation of China(Grant No.50608049)the Shanghai Leading Academic Discipline Project(Grant No.T105) the Youth Development Foundation of Shanghai Municipal Commission of Education(Grant No.04AC107)
文摘A laboratory-scale trickling biofilter column, filled with Raschig rings and inoculated with Pseudomonas putida (ATCC 1785) was used to 'purify chlorobenzene contained waste gases. Sodium dodecyl sulfonate (SDS) was used to enhance the performance of trickling biofilter. Purification performance of the trickling biofilter was examined for chiorobenzene inlet concentration of 1.20,-5.04 g/m^3 at different EBRTs between 76N153 s. Without SDS addition, with simultaneous increase in chlorobenzene inlet loading rate and gas flow rate, 100% removal efficiency was achieved at EBRT of 109 s and inlet loadings below 5120 mg/m^3. Addition of SDS to nutrient solution led to improvement of trickling biofilter purification performance. By introducing 25 mg/L SDS, the removal efficiency was increased by 21% and elimination capacity up to 234 g/(m^3.h) was achieved at chlorobenzene inlet loading of 241 g/(m^3.h). Although SDS concentration experienced a low rate reduction after continuous nutrient solution recirculation, this result has period little influence on trickling biofilter's removal efficiency in monitoring period.
文摘Paratungstate-loaded titania catalysts were prepared %via% the addition of a series of aqueous solutions of paratungstate(denoted as W_ 7) into an isopropanol solution of Ti[OCH(CH_ 3)_ 2]_ 4 by means of the sol-gel method. The catalysts were characterized by EDX, BET, FTIR, UV-Vis DRS, XRD and the results indicate that such paratungstate-loaded catalysts maintained their heptatungstate structure in the anatase titania matrix up to 400 ℃. The catalysts were tested for the heterogeneous photodegradation of chlorobenzene in aqueous media and showed a better catalytic activity than P-25 TiO_ 2 because paratungstate can prevent the recombination of the holes and electrons produced during irradiation. Moreover, the paratungstate-loaded titania catalysts can resist the disaggregation during the photoirradiation and can be easily recycled from the aqueous suspensions after reactions.
基金supported by State Key Laboratory of Chemical Engineering Foundation
文摘Isobaric vapor-liquid equilibrium(VLE) data for three binary systems, chlorobenzene + N,N-dimethylformamide, chlorobenzene + furfural, and chlorobenzene + benzaldehyde, were measured at 50.00 and 101.33 kPa using a modified Rose-Williams still. Gas chromatography was used to analyze the compositions of the samples and no azeotropic behavior was found. All of the measured VLE values were checked by the semi-empirical method proposed by Herington and the point-to-point Van Ness test method modified by Fredenslund. The experimental data were correlated by using the Wilson, the non-random two-liquid and universal quasi-chemical activity coefficient models. The corresponding parameters for the three models were obtained.
基金Supported by National Natural Science Foundation Project, China (41103045) "Science Frontier and Interdiscipline Innovation Project" ,Jilin University, China (201003031)
文摘[ Objective] The research aimed to study the effect of underground temperature on the adsorption behavior of chlorobenzene under artifi- cial recharge condition. [ Method] Based on the prior researches, combining actual condition of the artificial recharge test site, the adsorption be- havior of chlorobenzene under the background of artificial recharge was discussed. [ Reset ] The adsorption reaction of chlorobenzene correspon- ded with quasi-first-order and quasi-second-order kinetics equations at certain concentration. When temperature rose, reaction rate accelerated, and adsorption balance time shortened to 12 (0 ℃), 10 (10 ℃) and 8 (20 ℃) h. The adsorption of chlorobenzene corresponded with isothermal adsorption model very well at different concentrations. When temperature ranged from 0 to 20 ℃, the adsorption amount of medium on chloroben- zene increased at equilibrium time. The maximal adsorption amounts calculated by Langmuir model were 20.747, 21. 505, 23.364 μg/g at 0, 10 and 20 ℃, respectively. [ Conclusion] The adsorption of chlorobenzene in aquifer medium was endothermic reaction, and the best season of artifi- cial recharne was in summer.
基金supported by the National Key Research and Development Program of China(No.2018YFC1903100)Beijing Municipal Science and Technology Project Program(No.Z191100009119002)the State Environmental Protection Key Laboratory of Odor Pollution Control(No.20210504)。
文摘Non-thermal plasma(NTP)is considered to be a promising technology for the removal of volatile organic compounds;however,its application is limited by low CO_(2) selectivity and undesirable by-products.To overcome these issues,this paper discusses the degradation of chlorobenzene(CB)in systems of NTP coupled with catalysts,and the influence of catalyst locations in the NTP was investigated.In addition,the interaction between plasma and catalyst was also explored.The results indicated that the degradability of CB was remarkably improved through the combination of NTP with catalysts,and the formation of ozone was effectively inhibited.The degradation efficiency increased from 33.9%to 79.6%at 14 kV in the NTPcatalytic system,while the ozone concentration decreased from 437 to 237 mg m^(-3),and the degradation efficiency of in plasma catalysis(IPC)systems was superior to that of the post plasma catalysis system,while the inhibition ability of ozone exhibited an opposing trend.In the IPC system,the degradation efficiency was 87.7%at 14 k V,while the ozone concentration was151 mg m^(-3).Besides,the plasma did not destroy the pore structure and crystal structure of the catalyst,but affected the surface morphology and redox performance of the catalyst.Thus,NTP coupled catalytic system could improve the degradation performance of CB.Furthermore,the plasma discharge characteristics played a major role in the NTP synergistic catalytic degradation of CB.Finally,based on the experiment analysis results,the general reaction mechanism of CB degradation in an IPC reaction system was proposed.
文摘Carbon dioxide fixation technique was developed as an alternative dechlorination method of chlorobenzenes. Electrolysis of chlorobenzene was carried out in a one-compartment cell fitted with an aluminium anode and a platinum cathode. Electrolysis in N, N-dimethylformamide (DMF) solution containing 0.1 M of tetrapropylammonium bromide (TPAB) at 0 ℃, 100 ml/min of CO2 flow rate and 120 mA/cm^2 of current density was found to be the optimum conditions of this electrocarboxylation, which gave 72% yield of benzoic acid from chlorobenzene. These conditions were then applied to 1,2-dichlorobenzene and 1,3-dichlorobenzene in order to convert them to their corrcsponding benzoic acids.
基金National Natural Science Foundation of China(No.50678031)
文摘In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.
文摘The thermal decomposition of Cyclic Diperoxide of Benzaldehyde 3,6-diphenyl-1,2,4,5-tetroxane, (DFT) in chlorobenzene solution in the studied temperature range (130°C - 166°C) satisfactorily satisfies a first order law up to 60% conversions of diperoxide. DFT would decompose through a mechanism in stages and initiated by the homolytic breakdown of one of the peroxidic bonds of the molecule, with the formation of the corresponding intermediate biradical. The concentration studied was very low, so that the effects of secondary reactions of decomposition induced by free radicals originated in the reaction medium can be considered minimal or negligible. The activation parameters for the unimolecular thermal decomposition reaction of the DFT are ΔH# = 30.52 ± 0.3 kcal·mol-1 and ΔS# = -6.38 ± 0.6 cal·mol-1 K-1. The support for a step-by-step mechanism instead of a process concerted is made by comparison with the theoretically calculated activation energy for the thermal decomposition of 1,2,4,5-tetroxane.
基金This project was supported by the National Basic Research Program of China (No. 2007CB936602) and the Natural Science Foundation of Shandong Province in China (No. Y2008B20).
文摘The fluorescence quenching of inclusion complex of neutral red (NR) and hydroxypropyl-β-cyclodextrin (HP-β-CD) carried by chlorobenzene was investigated. The fluorescence intensity of NR increased due to the formed inclusion complex of HP-β-CD and NR. But the fluorescence intensity of NR-HP-β-CD diminished when chlorobenzene was added, and there was a linear relationship between the fluorescence quenching value of the system (△IF = IF, NR-HP-β-CD - IF, CB-NB-NR-HP-β-CD) and the concentration of chlorobenzene. Based on this, a novel fluorescence quenching method for the determination of chlorobenzene with NR as a fluorescence probe has been developed. Under the optimal conditions, the linear range of calibration curve for the determination of chlorobenzene was 5.0 × 10^-8 - 8.0 × 10^-6 mol/L and the detection limit was 1.0 × 10^-8 mol/L. It has been applied to determination ofchlorobenzene in synthetic waste water samples with satisfactory results.