期刊文献+
共找到309篇文章
< 1 2 16 >
每页显示 20 50 100
Effects of High K^+ and Alkaline pH on Ultrastructure of Dunaliella salina Chloroplasts 被引量:2
1
作者 马淑英 黄阳成 +1 位作者 杨小贺 武维华 《Acta Botanica Sinica》 CSCD 1999年第12期1342-1344,共3页
ItwasreportedthatthegrowthofDunaliellasalinaTeod .culturedinmediumcontaining 1mol/L NaClwasalmostcompletelyinhibitedbytheadditionof 10 0mmol/LKCl.ThehighK+ (10 0mmol/LKCl) treatmentalsosignificantlyinhibitedthephoto... ItwasreportedthatthegrowthofDunaliellasalinaTeod .culturedinmediumcontaining 1mol/L NaClwasalmostcompletelyinhibitedbytheadditionof 10 0mmol/LKCl.ThehighK+ (10 0mmol/LKCl) treatmentalsosignificantlyinhibitedthephotosyntheticrateofD .salinaanddecreasedchlorophyllcontentsin algae .ThisstudyfocusesonpossibleeffectsofhighK+ oralkalinepHontheultrastructuralchangeofchloro plastsinD .salina .AfterD .salinawasculturedinamediumcontaining 10 0mmol/LKClorinamedium withalkalinepHfor 8to 10days ,dramaticultrastructuralchangesoccurredinthechloroplastsincludingthy lakoidswelling ,volumeincreaseofchloroplast,andsignificantaccumulationofstarchgrainsinchloroplasts . Theresultsareconsistentwithourpreviousreportindicatingthattheultrastructuralchangesinchloroplastun derhighK+ oralkalinepHmayleadtoaninhibitoryeffectsonphotosynthesisandoverallgrowthofD .sali na . 展开更多
关键词 Dunaliellasalina POTASSIUM CHLOROPLAST Starchgrain Osmoticregulation
下载PDF
Changes of Chorophyll protein Complexes and Photosynthetic Activities of Chloroplasts from Lotus (Nelumbo nucifera) Seeds Germinating in Light 被引量:1
2
作者 唐崇钦 左宝玉 +5 位作者 李国清 张泉 姜桂珍 冯丽洁 彭德川 匡廷云 《Acta Botanica Sinica》 CSCD 1999年第6期608-612,共5页
The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of c... The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm. 展开更多
关键词 LOTUS Plumule germination Chloroplast development Chlorophyll protein complex POLYPEPTIDE Electron transfer rate
下载PDF
Effects of Doubled_CO_2 Concentration on Ultrastructure, Supramolecular Architecture and Spectral Characteristics of Chloroplasts from Wheat 被引量:1
3
作者 左宝玉 张泉 +2 位作者 姜桂珍 白克智 匡廷云 《Acta Botanica Sinica》 CSCD 2002年第8期908-912,共5页
Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architect... Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat. 展开更多
关键词 chloroplast wheat ( Triticum aestivum ) doubled_CO 2 concentration ultrastructure and supramolecular architecture absorption spectra low temperature (77 K) fluorescence emission spectra
下载PDF
Effects of Ce^(3+) on improvement of spectral characteristics and function of chloroplasts damaged by linolenic acid in spinach 被引量:2
4
作者 刘晓晴 迮玉官 +5 位作者 刘超 周敏 李娜 段艳梅 殷四涛 洪法水 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第2期288-293,共6页
Linolenic acid has great effects on the structure and function of chloroplast. We studied the effects of Ce3+ on the improvement of chloroplast spectral characteristics and oxygen evolution damaged by linolenic acid ... Linolenic acid has great effects on the structure and function of chloroplast. We studied the effects of Ce3+ on the improvement of chloroplast spectral characteristics and oxygen evolution damaged by linolenic acid in spinach. Results showed that Ce3+ could decrease the light absorption increased by linolenic acid and promote the distribution of excitation energy to PS II and alleviate the decrease of PS Ⅱ fluo- rescence yield caused by linolenic acid. The linolenic acid treatments in various concentrations reduced the oxygen-evolving rate of chloroplasts, but the rate was accelerated since adding Ce3+. 展开更多
关键词 Ce3+ linolenic acid chloroplasts spectral characteristic O2-evolving rare earths
下载PDF
Exogenous GSH protects tomatoes against salt stress by modulating photosystem Ⅱ efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts 被引量:14
5
作者 ZHOU Yan DIAO Ming +4 位作者 CUI Jin-xia CHEN Xian-jun WEN Ze-lin ZHANG Jian-wei LIU Hui-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第10期2257-2272,共16页
The effects of exogenous GSH(reduced glutathione)on photosynthetic characteristics,photosystem Ⅱ efficiency,absorbed light energy allocation and the H2O2-scavenging system in chloroplasts of salt-stressed tomato(S... The effects of exogenous GSH(reduced glutathione)on photosynthetic characteristics,photosystem Ⅱ efficiency,absorbed light energy allocation and the H2O2-scavenging system in chloroplasts of salt-stressed tomato(Solanum lycopersicum L.)seedlings were studied using hydroponic experiments in a greenhouse.Application of exogenous GSH ameliorated saline-induced growth inhibition,the disturbed balance of Na+ and Cl- ions and Na+/K+ ratios,and the reduction of the net photosynthetic rate(Pn).GSH also increased the maximal photochemical efficiency of PSⅡ(Fv/Fm),the electron transport rate(ETR),the photochemical quenching coefficient(qP),and the non-photochemical quenching coefficient(NPQ).In addition,GSH application increased the photochemical quantum yield(Y(Ⅱ))and relative deviation from full balance between the photosystems(β/α-1)and decreased the PSⅡ excitation pressure(1-qP)and quantum yield of non-regulated energy dissipation(Y(NO))in leaves of salt-stressed tomatoes without BSO(L-buthionine-sulfoximine,an inhibitor of key GSH synthesis enzymeγ-glutamylcysteine synthetase)or with BSO.Further,the addition of GSH depressed the accumulation of H2O2 and malondialdehyde(MDA),induced the redistribution of absorbed light energy in PSⅡ reaction centers,and improved the endogenous GSH content,GSH/GSSH ratio and activities of H2O2-scavenging enzymes(including superoxidase dismutase(SOD),catalase(CAT),peroxidase(POD)and key enzymes in the AsA-GSH cycle and Grx system)in the chloroplasts of salt-stressed plants with or without BSO.Therefore,GSH application alleviates inhibition of salt-induced growth and photosynthesis mainly by overcoming stomatal limitations,improving the PSⅡ efficiency,and balancing the uneven distribution of light energy to reduce the risk of ROS generation and to mediate chloroplast redox homeostasis and the antioxidant defense system to protect the chloroplasts from oxidative damage.Thus,GSH may be used as a potential tool for alleviating salt stress in tomato plants. 展开更多
关键词 tomato reduced glutathione NaCl stress CHLOROPLAST photosynthesis antioxidant enzyme
下载PDF
Isolation of Chloroplasts from Marine Microalga Isochrysis galbana Parke for Their Lipid Composition Analysis 被引量:1
6
作者 ZHONG Ye LI Yanrong +3 位作者 XU Jilin CAO Jiayi ZHOU Chengxu YAN Xiaojun 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期225-235,共11页
Marine microalga Isochrysis galbana is an important feed species with a high nutritional value.Different from other uni-cellular algae,its cell contains two chloroplasts which are the major sites for lipid synthesis.H... Marine microalga Isochrysis galbana is an important feed species with a high nutritional value.Different from other uni-cellular algae,its cell contains two chloroplasts which are the major sites for lipid synthesis.Here,we optimized a chloroplast isola-tion approach suitable for the isolation of I.galbana chloroplasts and determined the purity and integrity of the isolated chloroplasts through microscopic observations and enzyme activity assay.The chloroplast lipids were analyzed with a ultrahigh-performance li-quid chromatography-Q Exactive Orbitrap-mass spectrometry.This newly developed isolation approach is simple and reliable to isolate chloroplasts with high integrity and purity.The average yield of intact chloroplasts was 15.3%±0.1%.Glycolipids and acyl-glycerols were the main chloroplast lipids.Glycolipids accounted for 56.6%of chloroplast lipid.Digalactosyldiacylglycerol(DGDG),monogalactosyldiacylglycerol(MGDG)and sulfoquinovosyldiacylglycerol(SQDG)were the main glyceroglycolipids.The fatty acyl R1/R2 were mostly 18:4/16:1,18:3/16:1 and 18:4/18:5 in DGDGs,14:0/18:4,18:4/18:5,18:4/18:4 and 18:3/18:4 in MGDGs and 16:0/14:0,16:0/18:3,and 18:4/18:3 in SQDGs.In addition,diacylglycerol(DAG)was the most abundant acylglycerols;the content of 22:6/18:4-DAG was the highest.There was a little amount of glycosphingolipid(GSL)in chloroplast.Digalactosylmonoglyceride(DGMG),monogalactosylmonoglyceride(MGMG),sulfoquinovosylmonoacylglycerol(SQMG),monoglyceride(MAG),phospholi-pids(PLs),ceramide(Cer)and betaine lipids were nearly undetectable in chloroplast.The fatty acid proportions of DGDGs,MGDGs,SQDGs,DAGs,triglycerides(TAGs)and GSLs were either higher or lower than or similar to those of whole-cell.Collectively,our isolation approach is applicable to many aspects of chloroplast biology,and may offer a reference for the isolation of chloroplasts from other marine microalgae. 展开更多
关键词 Isochrysis galbana chloroplast isolation method lipid analysis chloroplast lipid
下载PDF
Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts for marine red algae(Rhodophyta)in China 被引量:1
7
作者 JIA Shangang WANG Xumin +8 位作者 QIAN Hao LI Tianyong SUN Jing WANG Liang YU Jun LI Xingang YIN Jinlong LIU Tao WU Shuangxiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第2期86-93,共8页
The chloroplast and mitochondrion of red algae (Phylum Rhodophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lin-eages by... The chloroplast and mitochondrion of red algae (Phylum Rhodophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lin-eages by using red algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Rhodophyta. We have found that red algae were divided into three clades of orders, Florideophyceae, Bangiophyceae and Cyanidiophyceae. Taxonomy resolution for Class Florideophyceae showed that Order Gigartinales was close to Order Halymeniales, while Order Graci-lariales was in a clade of Order Ceramials. We confirmed Prionitis divaricata (Family Halymeniaceae) was closely related to the clade of Order Gracilariales, rather than to genus Grateloupia of Order Halymeniales as reported before. Furthermore, we found both mitochondrial and chloroplastic genes in Rhodophyta under negative selection (Ka/Ks〈1), suggesting that red algae, as one primitive group of eukaryotic algae, might share joint evolutionary history with these two organelles for a long time, although we identified some dif-ferences in their phylogenetic trees. Our analysis provided the basic phylogenetic relationships of red algae, and demonstrated their potential ability to study endosymbiotic events. 展开更多
关键词 red algae RHODOPHYTA phylogenetic trees MITOCHONDRION CHLOROPLAST
下载PDF
Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts of essential brown algae(Phaeophyceae)in China 被引量:1
8
作者 JIA Shangang WANG Xumin +8 位作者 LI Tianyong QIAN Hao SUN Jing WANG Liang YU Jun REN Lufeng YIN Jinlong LIU Tao WU Shuangxiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第2期94-101,共8页
The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their e... The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lineages by using algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Kingdom Chromista. We have found that there is a split between Class Phaeophyceae of Phylum Ochrophyta and the others (Phylum Cryptophyta and Haptophyta) in Kingdom Chromista, and identified more diversity in chloroplast genes than mitochondrial ones in their phylogenetic trees. Taxonomy resolution for Class Phaeophyceae showed that it was divided into Laminariales-Ectocarpales clade and Fucales clade, and phylogenetic positions of Kjellmaniella crassi-folia, Hizikia fusifrome and Ishige okamurai were confirmed. Our analysis provided the basic phylogenetic relationships of Chromista algae, and demonstrated their potential ability to study endosymbiotic events. 展开更多
关键词 PHAEOPHYCEAE brown algae CHROMISTA phylogenetic trees MITOCHONDRION CHLOROPLAST
下载PDF
Efficient transcription of the larvicidal <i>cry</i>4<i>Ba</i>gene from <i>Bacillus thuringiensis</i>in transgenic chloroplasts of the green algal <i>Chlamydomonas reinhardtii</i>
9
作者 Thanate Juntadech Kittisak Yokthongwattana +3 位作者 Sithichoke Tangphatsornruang Yun-kiam Yap Gerd Katzenmeier Chanan Angsuthanasombat 《Advances in Bioscience and Biotechnology》 2012年第4期362-369,共8页
Unicellular micro-alga Chlamydomonas reinhardtii has been recognized as a promising host for expressing recombinant proteins albeit its limited utility due to low levels of heterologous protein expression. Here, trans... Unicellular micro-alga Chlamydomonas reinhardtii has been recognized as a promising host for expressing recombinant proteins albeit its limited utility due to low levels of heterologous protein expression. Here, transcription of the 3.4-kb mosquito-larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic C. reinhardtii chloroplasts under control of the promoter and 5’-untranslated region of photosynthetic psbA gene was accomplished. Inverted repeats in chloroplast genomes of the host strain with deleted endogenous psbA genes were selected as recombination targets. Two transformant lines were obtained by dual-phenotypic screening via exhibition of resistance to spectinomycin and restoration of photosynthetic activity. Stable and site-specific integration of intact cry4Ba and psbA genes into chloroplast genomes found in both transgenic lines implied homoplasmy of organelle populations. Achievement in cotranscription of cry4Ba and psbA transgenes revealed by RT-PCR and Northern blot analyses demonstrates the sufficiency of this system’s transcription machinery, offering the further innovation for insecticidal protein production. 展开更多
关键词 Chlamydomonas REINHARDTII Chloroplast Transformation Inverted Repeats Bt-cry4Ba Transcript PSBA Promoter
下载PDF
Chloroplasts prevent precocious flowering through a GOLDEN2-LIKE–B-BOX DOMAIN PROTEIN module
10
作者 Hendry Susila Zeeshan Nasim +4 位作者 Katarzyna Gawarecka Ji-Yul Jung Suhyun Jin Geummin Youn Ji Hoon Ahn 《Plant Communications》 SCIE CSCD 2023年第3期215-227,共13页
The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues.Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation.Chloro... The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues.Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation.Chloroplasts also convey information directly to the nucleus through retrograde signaling to control plant growth and development.Here,we show that mutants defective in chlorophyll biosynthesis and chloroplast development flowered early,especially under long-day conditions,although low sugar accumulation was seen in some mutants.Plants treated with the bleaching herbicide norflurazon also flowered early,suggesting that chloroplasts have a role in floral repression.Among retrograde signaling mutants,the golden2-like 1(glk1)glk2 double mutants showed early flowering under long-day conditions.This early flowering was completely suppressed by constans(co)and flowering locus t(ft)mutations.Leaf vascular-specific knockdown of both GLK1 and GLK2 phenocopied the glk1 glk2 mutants.GLK1 and GLK2 repress flowering by directly activating the expression of B-BOX DOMAIN PROTEIN 14(BBX14),BBX15,and BBX16 via CCAATC cis-elements in the BBX genes.BBX14/15/16 physically interact with CO in the nucleus,and expression of BBXs hampered CO-mediated FT transcription.Simultaneous knockdown of BBX14/15/16 by artificial miRNA(35S::amiR-BBX14/15/16)caused early flowering with increased FT transcript levels,whereas BBX overexpression caused late flowering.Flowering of glk1/2 and 35S::amiR-BBX14/15/16 plants was insensitive to norflurazon treatment.Taking these observations together,we propose that the GLK1/2-BBX14/15/16 module provides a novel mechanism explaining how the chloroplast represses flowering to balance plant growth and reproductive development. 展开更多
关键词 Arabidopsis thaliana BBX CHLOROPLAST FLOWERING GLK retrograde signaling
原文传递
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
11
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress Carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Maize ZmFDR3 localized in chloroplasts is involved in iron transport 被引量:7
12
作者 HAN JianHui1,SONG XiuFang1,LI Peng1,YANG HuiJun2 & YIN LiPing1 1 College of Life Science,Capital Normal University,Beijing 100048,China 2 Department of Biological Sciences,University of South Carolina,Columbia,SC 29208,USA 《Science China(Life Sciences)》 SCIE CAS 2009年第9期864-871,共8页
Iron is an essential nutrient for plant metabolism such that Fe-limited plants display chlorosis and suffer from reduced photosynthetic efficiency. Differential display previously identified genes whose expression was... Iron is an essential nutrient for plant metabolism such that Fe-limited plants display chlorosis and suffer from reduced photosynthetic efficiency. Differential display previously identified genes whose expression was elevated in Fe-deficient maize roots. Here,we describe the functional characterization of one of the genes identified in the screen,ZmFDR3 (Zea maize Fe-deficiency-related). Heterologous functional complementation assays using a yeast iron uptake mutant showed that ZmFDR3 functions in iron transport. ZmFDR3 contains a domain found in FliN-proteins of the type III secretion system and is predicted to localize to the thylakoid of plastids. Fluorescence immunocytochemistry showed that ZmFDR3 is localized in the plastids of roots,stems and leaves,with high expression found in guard cell chloroplasts. Transgenic tobacco expressing a 35S-ZmFDR3 construct contains elevated iron content,displays well arranged thylakoid membranes and has photosynthetic indices that are higher than those of the wild type. Together,these results suggest that ZmFDR3 functions in chloroplast iron transport. 展开更多
关键词 ZmFDR3 IRON transport IRON CONTENT chloroplasts
原文传递
Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function 被引量:5
13
作者 Luca Carraretto Enrico Teardo +3 位作者 Vanessa Checchetto Giovanni Finazzi Nobuyuki Uozumi Ildiko Szabo 《Molecular Plant》 SCIE CAS CSCD 2016年第3期371-395,共25页
Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioen... Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for chan- nels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple stra- tegies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future. 展开更多
关键词 ion channels chloroplasts MITOCHONDRIA CYANOBACTERIA ENDOSYMBIOSIS plant physiology
原文传递
On the Impact of Precursor Unfolding during Protein Import into Chloroplasts 被引量:4
14
作者 Maike Ruprecht Tihana Bionda +3 位作者 Takehiro Sato Maik S. Sommer Toshiya Endo Enrico Schleiff 《Molecular Plant》 SCIE CAS CSCD 2010年第3期499-508,共10页
Protein translocation across membranes is a fundamental cellular process. The majority of the proteins of organelles such as mitochondria and chloroplasts is synthesized in the cytosol and subsequently imported in a p... Protein translocation across membranes is a fundamental cellular process. The majority of the proteins of organelles such as mitochondria and chloroplasts is synthesized in the cytosol and subsequently imported in a posttranslational manner. The precursor proteins have to be unfolded at least for translocation, but it has also been assumed that they are unfolded during transport to the organelle in the cytosol. Unfolding is governed by chaperones and the translocon itself. At the same time, chaperones provide the energy for the import process. The energetic properties of the chloroplast translocon were studied by import of the Ig-like module of the muscle protein titin fused to the transit peptide of the chloroplast targeted oxygen evolving complex subunit of 33 kDa (OE33). Our results suggest that p(OE33)titin is folded prior to import and that translocation is initiated by unfolding after having bound to the translocon at the chloroplast surface. Using a set of stabilizing and destabilizing mutants of titin previously analyzed by atomic force microscopy and as passenger for mitochondrial translocation, we studied the unfolding force provided by the chloroplast translocon. Based on these results, a model for translocation is discussed. 展开更多
关键词 chloroplasts IMPORT precursor protein TITIN energetic of translocation.
原文传递
Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells 被引量:3
15
作者 Dong Wook Lee Sumin Lee +4 位作者 Junho Lee Seungjin Woo Md.Abdur Razzak Alessandro Vitale Inhwan Hwang 《Molecular Plant》 SCIE CAS CSCD 2019年第7期951-966,共16页
Plants possess both types of endosymbiotic organelles, chloroplasts and mitochondria. Transit peptides and presequences function as signal sequences for specific import into chloroplasts and mitochondria, respectively... Plants possess both types of endosymbiotic organelles, chloroplasts and mitochondria. Transit peptides and presequences function as signal sequences for specific import into chloroplasts and mitochondria, respectively. However, how these highly similar signal sequences confer the protein import specificity remains elusive. Here, we show that mitochondrial- or chloroplast-specific import involves two distinct steps, specificity determination and translocation across envelopes, which are mediated by the N-terminal regions and functionally interchangeable C-terminal regions, respectively, of transit peptides and presequences. A domain harboring multiple-arginine and hydrophobic sequence motifs in the N-terminal regions of presequences was identified as the mitochondrial specificity factor. The presence of this domain and the absence of arginine residues in the N-terminal regions of otherwise common targeting signals confers specificity of protein import into mitochondria and chloroplasts, respectively. AtToc159, a chloroplast import receptor, also contributes to determining chloroplast import specificity. We propose that common ancestral sequences were functionalized into mitochondrial- and chloroplast-specific signal sequences by the presence and absence, respectively, of multiple-arginine and hydrophobic sequence motifs in the N-terminal region. 展开更多
关键词 transit peptide PRESEQUENCE protein IMPORT into chloroplasts and MITOCHONDRIA N-terminal SPECIFICITY DOMAIN C-terminal common translocation DOMAIN IMPORT SPECIFICITY determination
原文传递
Phylogenetic study on Scenedesmacae with the description of a new genus Coccoidesmus gen.nov.(Chlorophyceae,Chlorophyta)and chloroplast genome analyses
16
作者 Qinghua WANG Ying HOU +2 位作者 Yanhui LI Ying SHI Guoxiang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1272-1285,共14页
Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,th... Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family. 展开更多
关键词 PHYLOGENETIC Scenedesmaceae Coccoidesmus morphology chloroplast genome
下载PDF
Morphological and molecular evidence for natural hybridization between Sorbus pohuashanensis and S. discolor (Rosaceae)
17
作者 Yuxia Wu Xuedan Yu +4 位作者 Wei Tang Wenhua Yang Qidi Fu Yongqi Zheng Chuanhong Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期189-201,共13页
In overlapping distribution areas of Sorbus pohuashanensis and S.discolor in North China(Mount Tuoliang,Mount Xiling and Mount Baihua),Sorbus indi-viduals were found with pink fruit,which have never been recorded for ... In overlapping distribution areas of Sorbus pohuashanensis and S.discolor in North China(Mount Tuoliang,Mount Xiling and Mount Baihua),Sorbus indi-viduals were found with pink fruit,which have never been recorded for the flora of China.Fourteen morphological characters combined with four chloroplast DNA markers and internal transcribed spacer(ITS)were used to analyze the origin of the Sorbus individuals with pink fruits and their relationship to S.pohuashanensis and S.discolor.PCA,SDA and one-way(taxon)ANOVA of morphological characters provided convincing evidence of the hybrid ori-gin of Sorbus individuals with pink fruits based on a novel morphological character and many intermediate characters.Haplotype analysis based on four cpDNA markers showed that either S.pohuashanensis or S.discolor were maternal parents of Sorbus individuals with pink fruits.Incongru-ence of the position of Sorbus individuals with pink fruits between cpDNA and ITS in cluster trees supported by DNA sequence comparative analysis,implying former hybridiza-tion events between S.pohuashanensis and S.discolor.Mul-tiple hybridization events between S.pohuashanensis and S.discolor might have contributed to the generation of Sorbus individuals with pink fruits.This study has provided insights into hybridization between species of the same genus in sympatric areas,which is of great significance for the study of interspecific hybridization. 展开更多
关键词 HYBRIDIZATION ITS Chloroplast DNA Morphological characters SORBUS
下载PDF
A Golden2-like transcription factor, BnGLK1a, improves chloroplast development, photosynthesis, and seed weight in rapeseed
18
作者 Qianwei zhang Yuanyi Mao +11 位作者 Zikun Zhao Xin Hu Ran Hu Nengwen Yin Xue Sun Fujun Sun Si Chen Yuxiang jiang Liezhao Liu Kun Lu Jiana Li Yu Pan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1481-1493,共13页
Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golde... Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golden2-like 1a(BnGLK1a)plays an important role in regulating chloroplast development and photosynthetic efficiency.Overexpressing BnGLK1a resulted in significant increases in chlorophyll content,the number of thylakoid membrane layers and photosynthetic efficiency in Brassica napus,while knocking down BnGLK1a transcript levels through RNA interference(RNAi)had the opposite effects.A yeast two-hybrid screen revealed that BnGLK1a interacts with the abscisic acid receptor PYRABACTIN RESISTANCE 1-LIKE 1-2(BnPYL1-2)and CONSTITUTIVE PHOTOMORPHOGENIC 9 SIGNALOSOME 5A subunit(BnCSN5A),which play essential roles in regulating chloroplast development and photosynthesis.Consistent with this,BnGLK1a-RNAi lines of B.napus display hypersensitivity to the abscisic acid(ABA)response.Importantly,overexpression of BnGLK1a resulted in a 10%increase in thousand-seed weight,whereas seeds from BnGLK1a-RNAi lines were 16%lighter than wild type.We propose that BnGLK1a could be a potential target in breeding for improving rapeseed productivity.Our results not only provide insights into the mechanisms of BnGLK1a function,but also offer a potential approach for improving the productivity of Brassica species. 展开更多
关键词 Brassica napus BnGLK1a chloroplast development photosynthetic efficiency YIELD
下载PDF
Eco-physiological characteristics of Tetracentron sinense Oliv.saplings in response to different light intensities
19
作者 Rong Wang Xueheng Lu +4 位作者 Hongyan Han Xuemei Zhang Yonghong Ma Qinsong Liu Xiaohong Gan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期29-44,共16页
The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different ... The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different light intensities in various habitats affect eco-physiological characteristics of saplings and their natural regeneration.In this study,the light intensity in T.sinense habitats was simulated by artificial shading(L1:100%NS(natural sunlight)in the open;L2:50%NS in a forest gap or edge;L3:10%NS in understory)to investigate differences in morphology,leaf structure,physiology,and photosynthesis of 2-year-old sap-lings,and to analyze the mechanism of light intensity on sapling establishment.Significant differences were observed in morphology(including leaf area,and specific leaf area)under different light intensities.Compared to L1 and L3,chloroplast structure in L2 was intact.With increasing time,superoxide dismutase(SOD)and catalase(CAT)activities in L2 became gradually higher than under the other light intensities,while malondialdehyde(MDA)content was opposite.Shading decreased osmoregulation substance contents of leaves but increased chlorophyll.The results suggest that light intensities significantly affect the eco-physiological characteristics of T.sinense saplings and they would respond most favorably at intermediate levels of light by optimizing eco-physiological characteristics.Therefore,50%natural sunlight should be created to promote saplings establishment and population recovery of T.sinense during in situ conservation,including sowing mature seeds in forest edges or gaps and providing appropriate shade protection for seedlings and saplings in the open. 展开更多
关键词 Chloroplast ultrastructure Eco-physiological characteristics Light intensities Sapling establishment Tetracentron sinense Oliv
下载PDF
Across two phylogeographic breaks: Quaternary evolutionary history of a mountain aspen (Populus rotundifolia) in the Hengduan Mountains
20
作者 Jieshi Tang Xiaoyan Fan +6 位作者 Richard I.Milne Heng Yang Wenjing Tao Xinran Zhang Mengyun Guo Jialiang Li Kangshan Mao 《Plant Diversity》 SCIE CAS CSCD 2024年第3期321-332,共12页
Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,f... Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas. 展开更多
关键词 Chloroplast DNA MICROSATELLITE Phylogeographic break Populus rotundifolia Quaternary history Wind direction
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部