Tetra-hydroxymethyl phosphonium chloride (THPC) has been considered as an important chrome-free tanning agent. To understand the THPC tanning mechanism, the structure, charge distribution, activity and tanning abili...Tetra-hydroxymethyl phosphonium chloride (THPC) has been considered as an important chrome-free tanning agent. To understand the THPC tanning mechanism, the structure, charge distribution, activity and tanning ability of each phosphorous compound in THPC tanning system were studied, by ^31p NMR, FT-IR spectroscopy, differential scanning calorimetry (DSC) and computational chemistry method, etc. When pH raised to 6.0, the decomposition of THPC would take place, which results in a production of free formaldehyde, tri-hydroxymethyl phosphonium (TrHP) and tri-hydroxymethyl phosphine oxide (TrHPO). At pH 9.0, THPC will be converted completely to TrHP and most TrHP is further oxidized into TrHPO. It is possible that, in reaction of phosphorous compounds and collagens, both P-C and C-O bonds would break simultaneously or individually. From molecular charge distribution and bond polar properties, it is deduced that, if P-C bonds break, the activity is in order of TrHPO 〉 THPC 〉 TrHE whereas if C--O bonds break, the order is TrHP 〉 THPC 〉 TrHPO. It is more possible that P--C bonds will break in reaction with collagen, and TrHPO may be more active in the THPC tanning system. The results of tanning and DSC also prove the above conclusion. Furthermore, the fact that the shrinkage temperature of THPC tanned leather was below 70℃ when basified to pH 5.0 or lower suggests that the hydroxymethyl groups of THPC and TrHP are less possible to combine directly with amino groups of collagen.展开更多
The feasibility was investigated to substitute chrome-free passivation treatment of electrodeposited zinc in a titanium bath for chromate passivation treatment. The formation mechanism of the chrome-free passivation f...The feasibility was investigated to substitute chrome-free passivation treatment of electrodeposited zinc in a titanium bath for chromate passivation treatment. The formation mechanism of the chrome-free passivation film was further analyzed. The surface mor- phologies and the elemental compositions of the treated samples with varied immersion times were observed by scanning electron mi- croscopy (SEM) and determined by energy dispersion spectrometry (EDS), respectively. The electrode potential of the sample surface was recorded in the film formation process. The changes of the electrode potential are in accordance with that of SEM and EDS of the sample surface. The results of X-ray photoelectron spectroscopy (XPS) show the chrome-free passivation film composed ofZnO, SiO2, TiO2, Zn4Si207(OH)2, and SrF2. The anode zinc dissolution and the local pH value increase due to the cathode hydrogen ion reduction process result in the formation of the chrome-free passivation film. The macro-images of the chrome-free passivation films formed on electrodeposited zinc show that the color of the film changes from blue to iridescence with the increase of the immersion times.展开更多
The research progress and industrial application of chrome-free refractories for RH degasser were introduced in the paper.It is proved that unburned magnesia-spinel refractories used for RH throat and snorkel in Baost...The research progress and industrial application of chrome-free refractories for RH degasser were introduced in the paper.It is proved that unburned magnesia-spinel refractories used for RH throat and snorkel in Baosteel have longer service life compared with traditional direct bonded fused magnesia-chrome materials.The new developed chrome-free unburned magnesia-spinel composite can fully meet the present demand for RH operation and can be applied extensively for RH processing.At present,instead of chrome-containing materials,chrome-free refractories have been applied widely for RH in Baosteel.Super low carbon MgO-C material with high mechanical properties at mild and high temperatures can be an alternative chrome-free material for RH.展开更多
Silicic acid,commonly derived from cheap and easily available sodium silicate,has recently received great attention for application in leather industry to produce ecological leather with a cleaner approach.However,lea...Silicic acid,commonly derived from cheap and easily available sodium silicate,has recently received great attention for application in leather industry to produce ecological leather with a cleaner approach.However,leather tanned with silicic acid alone is poor in storage stability,which limits its practical application in leather production.In this work,a new environment-friendly combination tannage based on silicic acid and plant tannin was developed to address this issue along with improving the comprehensive performances of leather.The obtained leather was characterized by scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and so on.The results showed that compared with leather tanned with silicic acid alone,the leather tanned with this combination method possessed improved thermal stability,enhanced mechanical properties,acceptable softness,appropriate hydrophilicity,and especially enhanced storage stability.More importantly,the combination tanned leather with 1:1 of the mass ratio of silicic acid to vegetable tannin(composed of valonea extract and mimosa extract with the same weight)had more prominent comprehensive performances.In addition,the results demonstrated that hydrogen bonding played an important role in the combination tanning process.Furthermore,the hydrogen bonds generated between phenolic hydroxyl groups of polyphenols with silicon hydroxyl groups of silicic acid molecules inhibited the excessive condensation of Si-OH groups between themselves.Subsequently,the assessment of environmental impact revealed the value of BOD 5/COD of the wastewater produced in this combination tanning process is more than 0.3,indicating the chrome-free combination tannage based on silicic acid and plant tannin was an environment-friendly tanning technology.These findings therefore indicated that a new chrome-free tanning method with silicon and biomass materials as main tanning agents has potential practical application prospect in leather production.展开更多
Manufacture of eco-friendly chrome-free leather is of great significance for realizing sustainable development of leather industry.Conventional tanning theory believes that it is impossible to convert raw hide to leat...Manufacture of eco-friendly chrome-free leather is of great significance for realizing sustainable development of leather industry.Conventional tanning theory believes that it is impossible to convert raw hide to leather without the utilization of cross-linking agent(e.g.,chrome salts)among collagen fibers in raw hide.Here,we developed a brand-new leather manufacture strategy that relied on the composite dehydration media enabled self-driven directional dehydration mechanism to accomplish chrome-free leather manufacture for the first time,rather than followed the classic cross-linking mechanism that has been obeyed for more than one century in leather industry.We demonstrated that the essence of leather making is to regulate the water content in raw hide rather than to form cross-linkage among collagen fibers.The composite dehydration media comprised of anhydrous ethanol and molecular sieves(3A activated zeolite powder)successfully guaranteed continuous self-driven directional dehydration of raw hide by establishing stable water concentration gradient between raw hide and ethanol,which significantly increased the dispersity of collagen fibers in raw hide(with the water content reduced from 56.07%to 5.20%),thus obtaining chrome-free leather that is more ecological than chrome-tanned leather due to the elimination of any tanning agent.The as-prepared chrome-free leather exhibited outstanding tear force(174.86 N),tensile strength(24.56 N mm−2),elongation at break(53.28%)and dry-thermal stability,superior to chrome-tanned leather.Notably,the used compos-ite dehydration media was recyclable for chrome-free leather manufacture,therefore facilitating an environmentally benign leather manufacture process.Our investigations are expected to open up a new conceptual leather making strategy that is applicable for realizing substantial manufacture of eco-friendly leather.展开更多
基金the National Basic Research Program (2007CB616909)Startup Foundation of Applied Chemistry of the Key Discipline of Zhejiang University of Technology and Zhejiang Provincial Science and Technology Plan (2006C21107)
文摘Tetra-hydroxymethyl phosphonium chloride (THPC) has been considered as an important chrome-free tanning agent. To understand the THPC tanning mechanism, the structure, charge distribution, activity and tanning ability of each phosphorous compound in THPC tanning system were studied, by ^31p NMR, FT-IR spectroscopy, differential scanning calorimetry (DSC) and computational chemistry method, etc. When pH raised to 6.0, the decomposition of THPC would take place, which results in a production of free formaldehyde, tri-hydroxymethyl phosphonium (TrHP) and tri-hydroxymethyl phosphine oxide (TrHPO). At pH 9.0, THPC will be converted completely to TrHP and most TrHP is further oxidized into TrHPO. It is possible that, in reaction of phosphorous compounds and collagens, both P-C and C-O bonds would break simultaneously or individually. From molecular charge distribution and bond polar properties, it is deduced that, if P-C bonds break, the activity is in order of TrHPO 〉 THPC 〉 TrHE whereas if C--O bonds break, the order is TrHP 〉 THPC 〉 TrHPO. It is more possible that P--C bonds will break in reaction with collagen, and TrHPO may be more active in the THPC tanning system. The results of tanning and DSC also prove the above conclusion. Furthermore, the fact that the shrinkage temperature of THPC tanned leather was below 70℃ when basified to pH 5.0 or lower suggests that the hydroxymethyl groups of THPC and TrHP are less possible to combine directly with amino groups of collagen.
文摘The feasibility was investigated to substitute chrome-free passivation treatment of electrodeposited zinc in a titanium bath for chromate passivation treatment. The formation mechanism of the chrome-free passivation film was further analyzed. The surface mor- phologies and the elemental compositions of the treated samples with varied immersion times were observed by scanning electron mi- croscopy (SEM) and determined by energy dispersion spectrometry (EDS), respectively. The electrode potential of the sample surface was recorded in the film formation process. The changes of the electrode potential are in accordance with that of SEM and EDS of the sample surface. The results of X-ray photoelectron spectroscopy (XPS) show the chrome-free passivation film composed ofZnO, SiO2, TiO2, Zn4Si207(OH)2, and SrF2. The anode zinc dissolution and the local pH value increase due to the cathode hydrogen ion reduction process result in the formation of the chrome-free passivation film. The macro-images of the chrome-free passivation films formed on electrodeposited zinc show that the color of the film changes from blue to iridescence with the increase of the immersion times.
文摘The research progress and industrial application of chrome-free refractories for RH degasser were introduced in the paper.It is proved that unburned magnesia-spinel refractories used for RH throat and snorkel in Baosteel have longer service life compared with traditional direct bonded fused magnesia-chrome materials.The new developed chrome-free unburned magnesia-spinel composite can fully meet the present demand for RH operation and can be applied extensively for RH processing.At present,instead of chrome-containing materials,chrome-free refractories have been applied widely for RH in Baosteel.Super low carbon MgO-C material with high mechanical properties at mild and high temperatures can be an alternative chrome-free material for RH.
基金This research was supported by the National Natural Science Foundation of China(No.21376153)the Fundamental Research Funds for the Central University of China,and Sichuan University-Zschimmer&Schwarz CmbH&Co.KG Scholarships(2020).
文摘Silicic acid,commonly derived from cheap and easily available sodium silicate,has recently received great attention for application in leather industry to produce ecological leather with a cleaner approach.However,leather tanned with silicic acid alone is poor in storage stability,which limits its practical application in leather production.In this work,a new environment-friendly combination tannage based on silicic acid and plant tannin was developed to address this issue along with improving the comprehensive performances of leather.The obtained leather was characterized by scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and so on.The results showed that compared with leather tanned with silicic acid alone,the leather tanned with this combination method possessed improved thermal stability,enhanced mechanical properties,acceptable softness,appropriate hydrophilicity,and especially enhanced storage stability.More importantly,the combination tanned leather with 1:1 of the mass ratio of silicic acid to vegetable tannin(composed of valonea extract and mimosa extract with the same weight)had more prominent comprehensive performances.In addition,the results demonstrated that hydrogen bonding played an important role in the combination tanning process.Furthermore,the hydrogen bonds generated between phenolic hydroxyl groups of polyphenols with silicon hydroxyl groups of silicic acid molecules inhibited the excessive condensation of Si-OH groups between themselves.Subsequently,the assessment of environmental impact revealed the value of BOD 5/COD of the wastewater produced in this combination tanning process is more than 0.3,indicating the chrome-free combination tannage based on silicic acid and plant tannin was an environment-friendly tanning technology.These findings therefore indicated that a new chrome-free tanning method with silicon and biomass materials as main tanning agents has potential practical application prospect in leather production.
基金The National Natural Science Foundation of China(No.22178232,No.21978176)the National Natural Science Funds for Excellent Youth Scholars(No.21922808)+2 种基金the National Key Research and Development Program(No.2018YFC1901101)the Key Research and Development Program of Science and Technology Department of Sichuan Province(2021ZYCD009)the Program of Sichuan University Featured Research Groups in Engineering Disciplines.
文摘Manufacture of eco-friendly chrome-free leather is of great significance for realizing sustainable development of leather industry.Conventional tanning theory believes that it is impossible to convert raw hide to leather without the utilization of cross-linking agent(e.g.,chrome salts)among collagen fibers in raw hide.Here,we developed a brand-new leather manufacture strategy that relied on the composite dehydration media enabled self-driven directional dehydration mechanism to accomplish chrome-free leather manufacture for the first time,rather than followed the classic cross-linking mechanism that has been obeyed for more than one century in leather industry.We demonstrated that the essence of leather making is to regulate the water content in raw hide rather than to form cross-linkage among collagen fibers.The composite dehydration media comprised of anhydrous ethanol and molecular sieves(3A activated zeolite powder)successfully guaranteed continuous self-driven directional dehydration of raw hide by establishing stable water concentration gradient between raw hide and ethanol,which significantly increased the dispersity of collagen fibers in raw hide(with the water content reduced from 56.07%to 5.20%),thus obtaining chrome-free leather that is more ecological than chrome-tanned leather due to the elimination of any tanning agent.The as-prepared chrome-free leather exhibited outstanding tear force(174.86 N),tensile strength(24.56 N mm−2),elongation at break(53.28%)and dry-thermal stability,superior to chrome-tanned leather.Notably,the used compos-ite dehydration media was recyclable for chrome-free leather manufacture,therefore facilitating an environmentally benign leather manufacture process.Our investigations are expected to open up a new conceptual leather making strategy that is applicable for realizing substantial manufacture of eco-friendly leather.