As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ...As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.展开更多
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo...The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.展开更多
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar...Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.展开更多
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation...Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .展开更多
Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep infor...Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance.展开更多
The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To ...The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To assess their performance, we used 14 different classifiers in this study. Secondly, we looked at how soft voting and hard voting classifiers performed in a mixture of distinct individual classifiers. Finally, heuristics are used to create 9 models of stacking classifiers. The F1 score, prediction, recall, and accuracy have all been used to assess performance. Models 6 and 7 achieved the best accuracy of 96.13 while having a larger computational complexity. For benchmarking purposes, other individual classifiers are also tested.展开更多
To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur...To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV).展开更多
Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints...Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.展开更多
Multiple classifier system exhibits strong classification capacity compared with single classifiers,but they require significant computational resources.Selective ensemble system aims to attain equivalent or better cl...Multiple classifier system exhibits strong classification capacity compared with single classifiers,but they require significant computational resources.Selective ensemble system aims to attain equivalent or better classification accuracy with fewer classifiers.However,current methods fail to identify precise solutions for constructing an ensemble classifier.In this study,we propose an ensemble classifier design technique based on the perturbation binary salp swarm algorithm(ECDPB).Considering that extreme learning machines(ELMs)have rapid learning rates and good generalization ability,they can serve as the basic classifier for creating multiple candidates while using fewer computational resources.Meanwhile,we introduce a combined diversity measure by taking the complementarity and accuracy of ELMs into account;it is used to identify the ELMs that have good diversity and low error.In addition,we propose an ECDPB with powerful optimizing ability;it is employed to find the optimal subset of ELMs.The selected ELMs can then be used to forman ensemble classifier.Experiments on 10 benchmark datasets have been conducted,and the results demonstrate that the proposed ECDPB delivers superior classification capacity when compared with alternative methods.展开更多
An exhaustive study has been conducted on face videos from YouTube video dataset for real time face recognition using the features from deep learning architectures and also the information set features. Our objective ...An exhaustive study has been conducted on face videos from YouTube video dataset for real time face recognition using the features from deep learning architectures and also the information set features. Our objective is to cash in on a plethora of deep learning architectures and information set features. The deep learning architectures dig in features from several layers of convolution and max-pooling layers though a placement of these layers is architecture dependent. On the other hand, the information set features depend on the entropy function for the generation of features. A comparative study of deep learning and information set features is made using the well-known classifiers in addition to developing Constrained Hanman Transform (CHT) and Weighted Hanman Transform (WHT) classifiers. It is demonstrated that information set features and deep learning features have comparable performance. However, sigmoid-based information set features using the new classifiers are found to outperform MobileNet features.展开更多
Some questions regarding the analysis of classifiers and classifier constructions are raised in this paper.The classifier,as a mere adjunct adjoining to the head,cannot serve as the head of the noun phrase containing ...Some questions regarding the analysis of classifiers and classifier constructions are raised in this paper.The classifier,as a mere adjunct adjoining to the head,cannot serve as the head of the noun phrase containing it,and as a result,it cannot project as ClP or nP.Under this approach,the DP analysis and the classifier construction theory are further refined.The constituents which precede and follow the classifier are analyzed in terms of their syntactic functions,semantic relations,linear features,feature assignment and syntactic occurrence in order to represent the classifier construction with the X-bar phrase structure theory appropriately and correctly and present a universal approach to classifier constructions in various languages.展开更多
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ...Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al-展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensembl...Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms.展开更多
The participation of ordinary devices in networking has created a world of connected devices rapidly.The Internet of Things(IoT)includes heterogeneous devices from every field.There are no definite protocols or standa...The participation of ordinary devices in networking has created a world of connected devices rapidly.The Internet of Things(IoT)includes heterogeneous devices from every field.There are no definite protocols or standards for IoT communication,and most of the IoT devices have limited resources.Enabling a complete security measure for such devices is a challenging task,yet necessary.Many lightweight security solutions have surfaced lately for IoT.The lightweight security protocols are unable to provide an optimum protection against prevailing powerful threats in cyber world.It is also hard to deploy any traditional security protocol on resource-constrained IoT devices.Software-defined networking introduces a centralized control in computer networks.SDN has a programmable approach towards networking that decouples control and data planes.An SDN-based intrusion detection system is proposed which uses deep learning classifier for detection of anomalies in IoT.The proposed intrusion detection system does not burden the IoT devices with security profiles.The proposed work is executed on the simulated environment.The results of the simulation test are evaluated using various matrices and compared with other relevant methods.展开更多
In this work,the reflux classifier with closely spaced inclined channels is used as the pre-concentration facility to improve the separation efficiency before the shaking table separation.Three operating parameters of...In this work,the reflux classifier with closely spaced inclined channels is used as the pre-concentration facility to improve the separation efficiency before the shaking table separation.Three operating parameters of reflux classifier(RC)to pre-concentrate fine(0.023−0.15 mm)tailings of antimony oxide were optimized by response surface methodology(RSM)using a three-level Box-Behnken design(BBD).The parameters studied for the optimization were feeding speed,underflow,and ascending water speed.Second-order response functions were produced for the Sb grade and recovery rate of the concentrate.Taking advantage of the quadratic programming,when the factors of feeding,underflow and ascending water are respectively 225,30 and 133 cm^3/min,a better result can be achieved for the concentrate grade of 2.31% and recovery rate of 83.17%.At the same time,70.48% of the tailings with the grade of 0.20% were discarded out of the feeding.The results indicated that the reflux classifier has a good performance in dealing with fine tailings of antimony oxide.Moreover,second-order polynomial equations,ANOVA,and three-dimensional surface plots were developed to evaluate the effects of each parameter on Sb grade and recovery rate of the concentrate.展开更多
The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air class...The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.展开更多
The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measur...The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.展开更多
基金supported by the Meteorological Soft Science Project(Grant No.2023ZZXM29)the Natural Science Fund Project of Tianjin,China(Grant No.21JCYBJC00740)the Key Research and Development-Social Development Program of Jiangsu Province,China(Grant No.BE2021685).
文摘As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.
文摘The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.
基金This researchwork is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R411),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.
文摘Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .
文摘Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance.
文摘The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To assess their performance, we used 14 different classifiers in this study. Secondly, we looked at how soft voting and hard voting classifiers performed in a mixture of distinct individual classifiers. Finally, heuristics are used to create 9 models of stacking classifiers. The F1 score, prediction, recall, and accuracy have all been used to assess performance. Models 6 and 7 achieved the best accuracy of 96.13 while having a larger computational complexity. For benchmarking purposes, other individual classifiers are also tested.
文摘To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV).
文摘Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.
基金supported in part by the Anhui Provincial Natural Science Founda-tion[1908085QG298,1908085MG232]the National Nature Science Foundation of China[91546108,61806068]+5 种基金the National Social Science Foundation of China[21BTJ002]the Anhui Provincial Science:and Technology Major Projects Grant[201903a05020020]the Fundamental Research Funds for the Central Universities[Z2019HGTA0053,JZ2019HG BZ0128]the Humanities and Social Science Fund of Ministry of Education of China[20YJA790021]the Major Project of Philosophy and Social Science Planning of Zhejiang Province[22YJRC07ZD]the Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-Making(Hefei University of Technology),Ministry of Education.
文摘Multiple classifier system exhibits strong classification capacity compared with single classifiers,but they require significant computational resources.Selective ensemble system aims to attain equivalent or better classification accuracy with fewer classifiers.However,current methods fail to identify precise solutions for constructing an ensemble classifier.In this study,we propose an ensemble classifier design technique based on the perturbation binary salp swarm algorithm(ECDPB).Considering that extreme learning machines(ELMs)have rapid learning rates and good generalization ability,they can serve as the basic classifier for creating multiple candidates while using fewer computational resources.Meanwhile,we introduce a combined diversity measure by taking the complementarity and accuracy of ELMs into account;it is used to identify the ELMs that have good diversity and low error.In addition,we propose an ECDPB with powerful optimizing ability;it is employed to find the optimal subset of ELMs.The selected ELMs can then be used to forman ensemble classifier.Experiments on 10 benchmark datasets have been conducted,and the results demonstrate that the proposed ECDPB delivers superior classification capacity when compared with alternative methods.
文摘An exhaustive study has been conducted on face videos from YouTube video dataset for real time face recognition using the features from deep learning architectures and also the information set features. Our objective is to cash in on a plethora of deep learning architectures and information set features. The deep learning architectures dig in features from several layers of convolution and max-pooling layers though a placement of these layers is architecture dependent. On the other hand, the information set features depend on the entropy function for the generation of features. A comparative study of deep learning and information set features is made using the well-known classifiers in addition to developing Constrained Hanman Transform (CHT) and Weighted Hanman Transform (WHT) classifiers. It is demonstrated that information set features and deep learning features have comparable performance. However, sigmoid-based information set features using the new classifiers are found to outperform MobileNet features.
文摘Some questions regarding the analysis of classifiers and classifier constructions are raised in this paper.The classifier,as a mere adjunct adjoining to the head,cannot serve as the head of the noun phrase containing it,and as a result,it cannot project as ClP or nP.Under this approach,the DP analysis and the classifier construction theory are further refined.The constituents which precede and follow the classifier are analyzed in terms of their syntactic functions,semantic relations,linear features,feature assignment and syntactic occurrence in order to represent the classifier construction with the X-bar phrase structure theory appropriately and correctly and present a universal approach to classifier constructions in various languages.
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金This project was supported by Shanghai Shu Guang Project.
文摘Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al-
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金supported by National Natural Science Foundation of China (Nos. 61073133, 60973067, and 61175053)Fundamental Research Funds for the Central Universities of China(No. 2011ZD010)
文摘Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms.
基金The authors are grateful to MANF UGC,Government of India,for providing financial support under MANF-UGC(MANF-2015-17-JAM-60,506)programme to carry out this work.
文摘The participation of ordinary devices in networking has created a world of connected devices rapidly.The Internet of Things(IoT)includes heterogeneous devices from every field.There are no definite protocols or standards for IoT communication,and most of the IoT devices have limited resources.Enabling a complete security measure for such devices is a challenging task,yet necessary.Many lightweight security solutions have surfaced lately for IoT.The lightweight security protocols are unable to provide an optimum protection against prevailing powerful threats in cyber world.It is also hard to deploy any traditional security protocol on resource-constrained IoT devices.Software-defined networking introduces a centralized control in computer networks.SDN has a programmable approach towards networking that decouples control and data planes.An SDN-based intrusion detection system is proposed which uses deep learning classifier for detection of anomalies in IoT.The proposed intrusion detection system does not burden the IoT devices with security profiles.The proposed work is executed on the simulated environment.The results of the simulation test are evaluated using various matrices and compared with other relevant methods.
基金Project(2015SK20792)supported by Key Province Key Technology Research and Development Program of the Ministry of Science and Technology of Hunan,ChinaProjects(2019zzts703,2020zzts740,2020zzts202)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2020P4FZG03A)supported by State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,China。
文摘In this work,the reflux classifier with closely spaced inclined channels is used as the pre-concentration facility to improve the separation efficiency before the shaking table separation.Three operating parameters of reflux classifier(RC)to pre-concentrate fine(0.023−0.15 mm)tailings of antimony oxide were optimized by response surface methodology(RSM)using a three-level Box-Behnken design(BBD).The parameters studied for the optimization were feeding speed,underflow,and ascending water speed.Second-order response functions were produced for the Sb grade and recovery rate of the concentrate.Taking advantage of the quadratic programming,when the factors of feeding,underflow and ascending water are respectively 225,30 and 133 cm^3/min,a better result can be achieved for the concentrate grade of 2.31% and recovery rate of 83.17%.At the same time,70.48% of the tailings with the grade of 0.20% were discarded out of the feeding.The results indicated that the reflux classifier has a good performance in dealing with fine tailings of antimony oxide.Moreover,second-order polynomial equations,ANOVA,and three-dimensional surface plots were developed to evaluate the effects of each parameter on Sb grade and recovery rate of the concentrate.
基金supported by National Natural Science Foundation of China (Grant No. 50474035)
文摘The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.
基金financial support from the National Key Technologies R&D Program of China(2018YFF0216002)。
文摘The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.