The sandstones of the Late miocene–Pliocene Dibdibba Formation in the Najaf–Karbala Plateau and Basra were examined to determine their source rocks and origin. The rare earth elements(REE) and trace elements(Sc, Co,...The sandstones of the Late miocene–Pliocene Dibdibba Formation in the Najaf–Karbala Plateau and Basra were examined to determine their source rocks and origin. The rare earth elements(REE) and trace elements(Sc, Co, V, and Th) concentrations in these sandstones revealed that they likely derived from a single source. The steep light rare earth elements(LREE) and flat, heavy rare earth element(HREE) patterns, negative Eu anomaly, and high ΣREE contents in sandstones suggest its derivation from a suggests that a passive continental margin environment and originated from felsic source rocks. The average concentration of ΣREE is 93.5 ppm, which is lower than that of the average crustal compositions like Upper Continental Crust and Post Archean Australian Shale. The higher proportion of LREE compared to HREE implies that these sandstones were recycled and derived from a distal source. The Th/Co, Th/Sc, La/Sc, La/Co, Eu/Eu*and(La/Lu)cn elemental ratios indicated that these Late Miocene–Pliocene sandstones were derived from felsic rocks located in the marginal region of the Arabian Shield.展开更多
Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res...Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.展开更多
Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an...Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.展开更多
Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, a...Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.展开更多
Cements are widely developed in clastic rock-originated weathering crust(CWC)reservoirs in the Kexia region along the northwestern margin of the Junggar Basin and significantly affect reservoir physical properties and...Cements are widely developed in clastic rock-originated weathering crust(CWC)reservoirs in the Kexia region along the northwestern margin of the Junggar Basin and significantly affect reservoir physical properties and oil and gas distribution in this area.Focusing on the CWC reservoirs at the top of both the Permian Jiamuhe Formation and the Triassic Karamay Formation,this study analyzed the types and characteristics of cements in the reservoirs and explored their effects on reservoir physical properties based on thin sections,SEM images,XRD results,and tests of physical properties.The main results are as follows.The cements in the CWC reservoirs in Kexia region mainly consist of carbonate minerals(41.5%),clay minerals(27.8%)and zeolite minerals(30%),as well as small amount of siliceous minerals.Among them,the carbonate minerals are dominated by siderite and calcite,the clay minerals mainly include kaolinite,interstratified illite/smectite(I/S)and chlorite,and the zeolite minerals primarily comprise heulandite and laumontite.These different types of multiphase cements are generally paragenetic or associated and affect reservoir physical properties to different degrees.Specifically,the carbonate and clay cements of the early diagenetic stage reduced the reservoirs’average porosity from 21%to 15%.The dissolution of some carbonate and zeolite cements in the early A substage of the middle diagenetic stage restored the average porosity to 18%,and the cementation in the late A substage decreased the average porosity to 13%again,of which about 4%was reduced by carbonate cements.The average porosity of the CWC reservoirs gradually decreased to the current value of approximately 10%in the B substage of the middle diagenetic stage.The impact of cementation on the CWC reservoirs can reach as far as 70 m below the unconformity.Moreover,the types and contents of cements vary with their depth below the unconformity surface,leading to the development of multiple zones with high cement content and the differentiated oil and gas distribution.展开更多
Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, poro...Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, porosity measurements and fluid inclusion techniques and so on. The sandstones in the fluvial, (fan) delta-front have the best reservoir quality due to the depositional conditions mechanically controlling the petrology configuration and the primary porosity, and chemically influencing the diagenesis and development of secondary pores. The activity of the boundary faults and the sedimentary facies dominate the variation of reservoir quality in different areas and intervals. The reservoir quality varies with the position of sandstone beds in different vertical models of sandstone and mudstone. This mainly arose from the strong cementation or strong dissolution in the sandstone caused by the diagenesis evolution of adjacent mudstone. With higher oil saturation reservoir quality is better because the hydrocarbon charge favors dissolution and restricts cementation. Diagenesis, depositional conditions and tectonic setting are the key controls of reservoir quality in the Shahejie Formation of the Dongying Sag.展开更多
There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties...There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.展开更多
A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic r...A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic rocks formed in a tectonic setting of regional thrusting and strike-slipping represent a typical dry and hot subaerial alluvial fan environment formed in a proximal and rapidaccumulating sediment body in debris flows and a fan-surface braided river. Combining results from basin-fill sequences, sequences of coarse clastic rocks, fauna and sporo-pollen associations and thermochronological data, it is conduded that the coarse clastic rocks formed in the period of 54.2- 24.1 Ma, nearly coeval with the formation of Paleogene basins in the northern (Nangqen-Yushu thrust belt), middle (Batang-Lijiang fault belt), and disintegration of large basins in the southern (LanpingSimao fold belt) segments of Tibet. The widespread massive-bedded coarse clastic rocks, fold thrusting and strike-slip, thrust shortening, and igneous activities in the Paleogene basins of eastcentral Tibet indicate that an early diachronous tectonic uplift might have occurred in the Tibetan Plateau from Middle Eocene to Oligocene, related to the initial stage of collision of the Indian and Asian plates.展开更多
The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to man...The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to many other sediments-hosted base metal deposits. However, several recent studies have revealed the presence of sand injection structures, intrusive breccias, and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpres- sured fluids. This study reports new observations of fluid overpressure-related structures from under- ground workings (Paomaping and Fengzishan), which show clearer crosscutting relationships than in the open pit. The observed structures include: 1) sand (--rock fragment) dikes injecting into fractures in solidified rocks; 2) sand (~rock fragment) bodies intruding into unconsolidated or semi-consolidated sediments; 3) disintegrated semi-consolidated sand bodies; and 4) veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals. The development of ore minerals (sphalerite) in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization. The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization, which is different from the stress field with strong horizontal shortening prior to miner- alization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes. The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids, which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir. Because the clastic injection and hydraulic structures are genetically linked with the mineralizing fluid source, they can be used as a guide for mineral exploration.展开更多
Methodologies have been developed for calculating cutoffs of reservoir intervals with production capacity (RIPC) and reservoir intervals with accumulation capacity (RIAC) according to the types of pore throat stru...Methodologies have been developed for calculating cutoffs of reservoir intervals with production capacity (RIPC) and reservoir intervals with accumulation capacity (RIAC) according to the types of pore throat structures and dynamic force by using data from petrophysical analysis, production tests and mercury injection. The data are from clastic reservoirs in the third member (Es3) and the fourth member (Es4) of the Shahejie Formation in the Shengtuo area on the North Slope of the Dongying Sag, Jiyang Depression, China. The method of calculating cutoffs of RIPC is summarized as follows: 1) determination of permeability cutoffs of RIPC; 2) classification of types of pore-throat structures according to mercury injection data and then relating porosity to permeability and determining the relationship between porosity and permeability according to each type of pore-throat structure; and 3) calculating porosity cutoffs of RIPC using established correlation between porosity and permeability according to the type of pore throat structure. The method of calculating cutoffs of RIAC includes: 1) establishing a functional relationship between oil-water interracial tension and formation temperature; 2) calculating limiting values of maximum connected pore-throat radii according to formation temperature and dynamic forces of each reservoir interval; 3) correlating permeability with maximum connected pore-throat radius and then obtaining permeability cutoffs of RIAC; and 4) calculating porosity cutoffs on the basis of permeability cutoffs according to specific correlations, suitable for the type of porethroat structure. The results of this study show that porosity and permeability cutoffs of clastic reservoirs decrease with depth. For a fixed permeability cutoff, the porosity cutoff of R1PC varies because the type of pore throat is different. At a fixed temperature, porosity and permeability cutoffs of RIAC decrease as dynamic force increases. For a fixed permeability cutoff of effective hydrocarbon accumulation, the porosity cutoff also varies with different types of pore throat.展开更多
The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried ...The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.展开更多
In the southwestern margin of the Ordos Basin,uranium mineralization is primarily hosted by predominantly oxidative red clastic formations in the Lower Cretaceous.The main target layers for uranium exploration are the...In the southwestern margin of the Ordos Basin,uranium mineralization is primarily hosted by predominantly oxidative red clastic formations in the Lower Cretaceous.The main target layers for uranium exploration are the Madongshan and Liwaxia formations of the Liupanshan Group,followed by the Jingchuan Formation of the Zhidan Group.The host rocks(medium-fine feldspar quartz sandstone),which are bleached to a light grayish white color,contain a minor organic matter component and pyrite.Uranium mineralization changes from surficial infiltration or phreatic oxidation in the upper part to interlayer oxidation in the lower part.Uranium ore bodies are mostly lenticular or tabular in shape,locally shaped like crescent rolls.Individual ore bodies are typically small and shallow.Uranium predominantly manifests as pitchblende and coffinite.Coffinite is usually short and columnar or granular in habit,whereas pitchblende occurs as an irregular colloidal covering on the surface or in fissures of ferric oxide,silicate,clay or carbonate.Secondary uranium minerals are torbernite,uranophane,and uranopilite.Minerals associated with uranium are mainly pyrite,chalcopyrite and,to a minor extent,arsenopyrite and fluorite.The associated elements are Mo,V,Se,Co,Ni,and Mn,the host sandstone being high in Cu and Ba.Overall,the red clastic formations in the southwestern margin of the Ordos Basin are characterized by’five multiples but one low’which means multiple target layers,multiple stages of mineralization,multiple ore body shapes,multiple kinds of uranium minerals,multiple associated elements,but low organic matter.This implies an overall complex uranium metallogenic environment and mineralization process.It is recommended that future uranium exploration should take into consideration regional metallogenic conditions and mineralization features,with target layers in the wide-smooth synclinal slope being focused on.Most uranium deposits are small to medium in size,and the main type of uranium mineralization can vary by target layer.展开更多
In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic cla...In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic clastic reservoirs in the Tazhong area based on a lot of data. Several issues about the hydrocarbon accumulation related to the reservoirs were also discussed. The results were concluded that: the high-value areas of the porosity and permeability of clastic reservoirs were located in the southeast of the Tazhong area; the content of cement (carbonate cement in particular) was the main factor controlling the porosity and permeability of clastic reservoirs; the hydrocarbon distributions of Carboniferous and Silurian clastic reservoirs were closely related to the porosity and permeability; the favorable hydrocarbon accumulation areas of the two sets of strata were located in the southeast of this area, especially in the updip pinch-out area.展开更多
1 Introduction As new exploration domain for oil and gas,reservoirs with low porosity and low permeability have become a hotspot in recent years(Li Daopin,1997).With the improvement of technology,low porosity and low
The primary cracks in the rock block undergo series of steps and finally disintegrate,during this procession,the radius affects the impact force of rock block in clastic flow.Therefore,it is essential to figure out th...The primary cracks in the rock block undergo series of steps and finally disintegrate,during this procession,the radius affects the impact force of rock block in clastic flow.Therefore,it is essential to figure out the evolution mechanism of crack propagation for the design of engineering protection.In this study,based on fracture mechanics and Hertz contact theory,collision happened between rock block and slope surface is assumed to be elastic contact.Based on the above assumption,the critical impact force of crack propagation is obtained,and a model used to calculate the crack propagation length in a single collision is established.Besides,a rock fall site in Jiuzhai Valley was used to verify the calculation model.According to the model,several key factors were identified to influence crack propagation length including falling height,initial equivalent radius,and recovery coefficient of slope surface.Moreover,as a result of the orthogonal experiment,the influence of those factors on the crack propagation length was ranked,normal recovery coefficient>initial radius>initial falling height.In addition,the kinetic energy of the rock block in the compression stage is transformed into elastic deformation energy,angular kinetic energy,and dissipated energy of crack propagation.Due to the increase of collisions,the kinetic energy is gradually transformed into angular kinetic energy,and the dissipated energy of crack propagation weights is reduced.In conclusion,the crack propagation in rock block is a complicated progress,which is affected by multiple factors,especially falling height,initial equivalent radius,and recovery coefficient of slope surface.Our study may provide guidance for the design of protective structure of clastic flows.展开更多
The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controllin...The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.展开更多
At present,the main clastic rock reservoirs discovered in north Biru Basin are Xihu Formation, Lagongtang Formation,Duoni Formation and Jingzhushan Formation.Through the studies on petrology, reservoir properties and ...At present,the main clastic rock reservoirs discovered in north Biru Basin are Xihu Formation, Lagongtang Formation,Duoni Formation and Jingzhushan Formation.Through the studies on petrology, reservoir properties and diagenesis,it is concluded that diagenesis of these four layers are strong,most have entered the late diagenesis period.The main type of reservoir space is secondary-hole solution and the pore structure is micro-fine pore and micro展开更多
On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put fo...On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put forward according to the practical need of oilfield development and relevant theories. The specific implications of development and geology are given to each type of flow units, which has provided a scientific basis for oil development.展开更多
Terrigenous clastic reservoir rocks are widespread in China, and nearly all the industrial oil and gas accumulations in eastern China occur in the clastic rocks. The study shows that organic inclusions are mostly dist...Terrigenous clastic reservoir rocks are widespread in China, and nearly all the industrial oil and gas accumulations in eastern China occur in the clastic rocks. The study shows that organic inclusions are mostly distributed in the secondary fissures and pores which were formed in the process of oil-rock interaction, rather than in the cements or secondary enlargements.The organic inclusions are dominantly organic gas-rich or are composed of pure hydrocarbons.Homogenization temperatures range mainly from 120℃ to 130℃, which shows a relatively high maturity of organic matter. Vertical and horizontal temperature changes provide the grounds for the investigation of hasin evolution and thermal fluid-kinetics model. Fluorescence spectral characteristics of the organic inclusions indicate that oils and gases in the area studied probably have experienced two-stage or two-time migration. Micro-fluorescence research is one of the effective approaches to oil/source correlation and oil migration-stage determination. The abundance and occurrence of organic inclusions is one of the indicators of oil and gas abundance and accumulation in rock layers. With the help of other information, organic inclusions can provide the basis for the prospective assessment of oil and gas in clastic reservoir rocks.展开更多
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope(their δ18O values range from-0.3‰--0.1‰) and lighter oxygen isotope(their δ18O val...Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope(their δ18O values range from-0.3‰--0.1‰) and lighter oxygen isotope(their δ18O values range from-22.1‰--19.5‰).Generally,they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water.This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones,preserving intragranular volume and providing the mass basis for later disso-lution caused by acidic fluid flow to produce secondary porosity.Ferriferous calcites are characterized by relatively light carbon isotope with δ13C values ranging from-8.02‰ to-3.23‰,and lighter oxygen isotope with δ18O values ranging from-22.9‰ to-19.7‰,which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis.As the mid-late diagenetic products,ferriferous calcites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir.The late ankerite is relatively heavy in carbon isotope with δ13C values ranging from-1.92‰ to-0.84‰,and shows a wide range of variations in oxygen isotopic composition,with δ18O values ranging from-20.5‰ to-12.6‰.They are believed to have nothing to do with decarboxylation,but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation,and the alkaline diagenetic environment at the mid-late stage would promote this process.展开更多
文摘The sandstones of the Late miocene–Pliocene Dibdibba Formation in the Najaf–Karbala Plateau and Basra were examined to determine their source rocks and origin. The rare earth elements(REE) and trace elements(Sc, Co, V, and Th) concentrations in these sandstones revealed that they likely derived from a single source. The steep light rare earth elements(LREE) and flat, heavy rare earth element(HREE) patterns, negative Eu anomaly, and high ΣREE contents in sandstones suggest its derivation from a suggests that a passive continental margin environment and originated from felsic source rocks. The average concentration of ΣREE is 93.5 ppm, which is lower than that of the average crustal compositions like Upper Continental Crust and Post Archean Australian Shale. The higher proportion of LREE compared to HREE implies that these sandstones were recycled and derived from a distal source. The Th/Co, Th/Sc, La/Sc, La/Co, Eu/Eu*and(La/Lu)cn elemental ratios indicated that these Late Miocene–Pliocene sandstones were derived from felsic rocks located in the marginal region of the Arabian Shield.
基金Supported by the National Natural Science Foundation of China(41872113,42172109,42172108)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02)+1 种基金National Key R&D Program Project(2018YFA0702405)China University of Petroleum(Beijing)Research Project(2462020BJRC002,2462020YXZZ020)。
文摘Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.
文摘Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.
基金Supported by the National Natural Science Foundation(42222208,41821002)China National Science and Technology Major Project(2016ZX05006-007)Mount Taishan Scholar Young Expert Project(201909061).
文摘Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.
基金supported by the Shandong Province Natural Science Foundation of China(Grant no.ZR2021MD077)the National Major Science and Technology Project of China(Grant no.2017ZX05001-001-006).
文摘Cements are widely developed in clastic rock-originated weathering crust(CWC)reservoirs in the Kexia region along the northwestern margin of the Junggar Basin and significantly affect reservoir physical properties and oil and gas distribution in this area.Focusing on the CWC reservoirs at the top of both the Permian Jiamuhe Formation and the Triassic Karamay Formation,this study analyzed the types and characteristics of cements in the reservoirs and explored their effects on reservoir physical properties based on thin sections,SEM images,XRD results,and tests of physical properties.The main results are as follows.The cements in the CWC reservoirs in Kexia region mainly consist of carbonate minerals(41.5%),clay minerals(27.8%)and zeolite minerals(30%),as well as small amount of siliceous minerals.Among them,the carbonate minerals are dominated by siderite and calcite,the clay minerals mainly include kaolinite,interstratified illite/smectite(I/S)and chlorite,and the zeolite minerals primarily comprise heulandite and laumontite.These different types of multiphase cements are generally paragenetic or associated and affect reservoir physical properties to different degrees.Specifically,the carbonate and clay cements of the early diagenetic stage reduced the reservoirs’average porosity from 21%to 15%.The dissolution of some carbonate and zeolite cements in the early A substage of the middle diagenetic stage restored the average porosity to 18%,and the cementation in the late A substage decreased the average porosity to 13%again,of which about 4%was reduced by carbonate cements.The average porosity of the CWC reservoirs gradually decreased to the current value of approximately 10%in the B substage of the middle diagenetic stage.The impact of cementation on the CWC reservoirs can reach as far as 70 m below the unconformity.Moreover,the types and contents of cements vary with their depth below the unconformity surface,leading to the development of multiple zones with high cement content and the differentiated oil and gas distribution.
基金financially supported by the National Natural Science Foundation of China (Grant No. ZX20130157)Science Foundation of China University of Petroleum, Beijing (Grant No. KYJJ2012-01-29)the Key Technologies Research and Development Program of the Chinese Tenth Five-Year Plan (Grant No. 2001BA605A-09)
文摘Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, porosity measurements and fluid inclusion techniques and so on. The sandstones in the fluvial, (fan) delta-front have the best reservoir quality due to the depositional conditions mechanically controlling the petrology configuration and the primary porosity, and chemically influencing the diagenesis and development of secondary pores. The activity of the boundary faults and the sedimentary facies dominate the variation of reservoir quality in different areas and intervals. The reservoir quality varies with the position of sandstone beds in different vertical models of sandstone and mudstone. This mainly arose from the strong cementation or strong dissolution in the sandstone caused by the diagenesis evolution of adjacent mudstone. With higher oil saturation reservoir quality is better because the hydrocarbon charge favors dissolution and restricts cementation. Diagenesis, depositional conditions and tectonic setting are the key controls of reservoir quality in the Shahejie Formation of the Dongying Sag.
基金supported by the National Natural Science Foundation of China(Grants No.51409261 and 11172090)the Natural Science Foundation of Shandong Province(Grants No.ZR2014EEQ014)the Applied Basic Research Programs of Qingdao City(Grant No.14-2-4-67-jch)
文摘There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.
基金This research was supported by the National Key Project for Basic Research on the Tibetan Plateau (Grant G1998040800-3);National Natural Science Foundation of China (Grants 49972026 and 39972026);Chinese Academy of Sciences (CAS) Projects (Grant KZ952-JI408) ; US-NSF project (Grant 980612).
文摘A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic rocks formed in a tectonic setting of regional thrusting and strike-slipping represent a typical dry and hot subaerial alluvial fan environment formed in a proximal and rapidaccumulating sediment body in debris flows and a fan-surface braided river. Combining results from basin-fill sequences, sequences of coarse clastic rocks, fauna and sporo-pollen associations and thermochronological data, it is conduded that the coarse clastic rocks formed in the period of 54.2- 24.1 Ma, nearly coeval with the formation of Paleogene basins in the northern (Nangqen-Yushu thrust belt), middle (Batang-Lijiang fault belt), and disintegration of large basins in the southern (LanpingSimao fold belt) segments of Tibet. The widespread massive-bedded coarse clastic rocks, fold thrusting and strike-slip, thrust shortening, and igneous activities in the Paleogene basins of eastcentral Tibet indicate that an early diachronous tectonic uplift might have occurred in the Tibetan Plateau from Middle Eocene to Oligocene, related to the initial stage of collision of the Indian and Asian plates.
基金supported by NSERC(grant to Chi)NSFC (grants to Xue:40272050,40472054)
文摘The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to many other sediments-hosted base metal deposits. However, several recent studies have revealed the presence of sand injection structures, intrusive breccias, and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpres- sured fluids. This study reports new observations of fluid overpressure-related structures from under- ground workings (Paomaping and Fengzishan), which show clearer crosscutting relationships than in the open pit. The observed structures include: 1) sand (--rock fragment) dikes injecting into fractures in solidified rocks; 2) sand (~rock fragment) bodies intruding into unconsolidated or semi-consolidated sediments; 3) disintegrated semi-consolidated sand bodies; and 4) veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals. The development of ore minerals (sphalerite) in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization. The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization, which is different from the stress field with strong horizontal shortening prior to miner- alization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes. The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids, which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir. Because the clastic injection and hydraulic structures are genetically linked with the mineralizing fluid source, they can be used as a guide for mineral exploration.
基金co-funded by National Natura Science Foundation of China (Grant No. 41102058 Gran No. U1262203)+4 种基金the National Science and Technology Special Grant (No. 2011ZX05006-003)Shandong Natura Science Foundation (Grant No. ZR2011DQ017)the Fundamental Research Funds for the Central Universities (No. 12CX04001A No. 13CX02035A No. 13CX02036A)
文摘Methodologies have been developed for calculating cutoffs of reservoir intervals with production capacity (RIPC) and reservoir intervals with accumulation capacity (RIAC) according to the types of pore throat structures and dynamic force by using data from petrophysical analysis, production tests and mercury injection. The data are from clastic reservoirs in the third member (Es3) and the fourth member (Es4) of the Shahejie Formation in the Shengtuo area on the North Slope of the Dongying Sag, Jiyang Depression, China. The method of calculating cutoffs of RIPC is summarized as follows: 1) determination of permeability cutoffs of RIPC; 2) classification of types of pore-throat structures according to mercury injection data and then relating porosity to permeability and determining the relationship between porosity and permeability according to each type of pore-throat structure; and 3) calculating porosity cutoffs of RIPC using established correlation between porosity and permeability according to the type of pore throat structure. The method of calculating cutoffs of RIAC includes: 1) establishing a functional relationship between oil-water interracial tension and formation temperature; 2) calculating limiting values of maximum connected pore-throat radii according to formation temperature and dynamic forces of each reservoir interval; 3) correlating permeability with maximum connected pore-throat radius and then obtaining permeability cutoffs of RIAC; and 4) calculating porosity cutoffs on the basis of permeability cutoffs according to specific correlations, suitable for the type of porethroat structure. The results of this study show that porosity and permeability cutoffs of clastic reservoirs decrease with depth. For a fixed permeability cutoff, the porosity cutoff of R1PC varies because the type of pore throat is different. At a fixed temperature, porosity and permeability cutoffs of RIAC decrease as dynamic force increases. For a fixed permeability cutoff of effective hydrocarbon accumulation, the porosity cutoff also varies with different types of pore throat.
基金Financial support for this study by the National Basic Research Program of China (973) (No.2006CB 202300) is gratefully acknowledged
文摘The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.
基金jointly supported by Key Factors Identification and Targets Delineation of Sandstone Type Uranium Deposits in the Southern Ordos Basin(CNNC Integrated R&D Project,Code:Geo LTD1601–3)Scientific Research in Production Project issued by the Bureau of Geology,CNNC(Code:201902-7)the Chinese Geological Survey project(Code:DD201908135)。
文摘In the southwestern margin of the Ordos Basin,uranium mineralization is primarily hosted by predominantly oxidative red clastic formations in the Lower Cretaceous.The main target layers for uranium exploration are the Madongshan and Liwaxia formations of the Liupanshan Group,followed by the Jingchuan Formation of the Zhidan Group.The host rocks(medium-fine feldspar quartz sandstone),which are bleached to a light grayish white color,contain a minor organic matter component and pyrite.Uranium mineralization changes from surficial infiltration or phreatic oxidation in the upper part to interlayer oxidation in the lower part.Uranium ore bodies are mostly lenticular or tabular in shape,locally shaped like crescent rolls.Individual ore bodies are typically small and shallow.Uranium predominantly manifests as pitchblende and coffinite.Coffinite is usually short and columnar or granular in habit,whereas pitchblende occurs as an irregular colloidal covering on the surface or in fissures of ferric oxide,silicate,clay or carbonate.Secondary uranium minerals are torbernite,uranophane,and uranopilite.Minerals associated with uranium are mainly pyrite,chalcopyrite and,to a minor extent,arsenopyrite and fluorite.The associated elements are Mo,V,Se,Co,Ni,and Mn,the host sandstone being high in Cu and Ba.Overall,the red clastic formations in the southwestern margin of the Ordos Basin are characterized by’five multiples but one low’which means multiple target layers,multiple stages of mineralization,multiple ore body shapes,multiple kinds of uranium minerals,multiple associated elements,but low organic matter.This implies an overall complex uranium metallogenic environment and mineralization process.It is recommended that future uranium exploration should take into consideration regional metallogenic conditions and mineralization features,with target layers in the wide-smooth synclinal slope being focused on.Most uranium deposits are small to medium in size,and the main type of uranium mineralization can vary by target layer.
基金supported by the Basic Research Program of China (973 Program, Grant No. 2006CB202308)
文摘In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic clastic reservoirs in the Tazhong area based on a lot of data. Several issues about the hydrocarbon accumulation related to the reservoirs were also discussed. The results were concluded that: the high-value areas of the porosity and permeability of clastic reservoirs were located in the southeast of the Tazhong area; the content of cement (carbonate cement in particular) was the main factor controlling the porosity and permeability of clastic reservoirs; the hydrocarbon distributions of Carboniferous and Silurian clastic reservoirs were closely related to the porosity and permeability; the favorable hydrocarbon accumulation areas of the two sets of strata were located in the southeast of this area, especially in the updip pinch-out area.
基金funded by Major Projects of National Science and Technology "Large Oil and Gas Fields and CBM development"(Grant No. 2016ZX05027)
文摘1 Introduction As new exploration domain for oil and gas,reservoirs with low porosity and low permeability have become a hotspot in recent years(Li Daopin,1997).With the improvement of technology,low porosity and low
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090403)the Scientific Foundation of the Chinese Academy of Sciences(Grant No.KFZD-SW-425)the Key Research and Development Program of Sichuan Province(Grant No.2019YFG0460)。
文摘The primary cracks in the rock block undergo series of steps and finally disintegrate,during this procession,the radius affects the impact force of rock block in clastic flow.Therefore,it is essential to figure out the evolution mechanism of crack propagation for the design of engineering protection.In this study,based on fracture mechanics and Hertz contact theory,collision happened between rock block and slope surface is assumed to be elastic contact.Based on the above assumption,the critical impact force of crack propagation is obtained,and a model used to calculate the crack propagation length in a single collision is established.Besides,a rock fall site in Jiuzhai Valley was used to verify the calculation model.According to the model,several key factors were identified to influence crack propagation length including falling height,initial equivalent radius,and recovery coefficient of slope surface.Moreover,as a result of the orthogonal experiment,the influence of those factors on the crack propagation length was ranked,normal recovery coefficient>initial radius>initial falling height.In addition,the kinetic energy of the rock block in the compression stage is transformed into elastic deformation energy,angular kinetic energy,and dissipated energy of crack propagation.Due to the increase of collisions,the kinetic energy is gradually transformed into angular kinetic energy,and the dissipated energy of crack propagation weights is reduced.In conclusion,the crack propagation in rock block is a complicated progress,which is affected by multiple factors,especially falling height,initial equivalent radius,and recovery coefficient of slope surface.Our study may provide guidance for the design of protective structure of clastic flows.
基金Supported by the China National Science and Technology Major Project (2016ZX05006-006)
文摘The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.
文摘At present,the main clastic rock reservoirs discovered in north Biru Basin are Xihu Formation, Lagongtang Formation,Duoni Formation and Jingzhushan Formation.Through the studies on petrology, reservoir properties and diagenesis,it is concluded that diagenesis of these four layers are strong,most have entered the late diagenesis period.The main type of reservoir space is secondary-hole solution and the pore structure is micro-fine pore and micro
文摘On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put forward according to the practical need of oilfield development and relevant theories. The specific implications of development and geology are given to each type of flow units, which has provided a scientific basis for oil development.
文摘Terrigenous clastic reservoir rocks are widespread in China, and nearly all the industrial oil and gas accumulations in eastern China occur in the clastic rocks. The study shows that organic inclusions are mostly distributed in the secondary fissures and pores which were formed in the process of oil-rock interaction, rather than in the cements or secondary enlargements.The organic inclusions are dominantly organic gas-rich or are composed of pure hydrocarbons.Homogenization temperatures range mainly from 120℃ to 130℃, which shows a relatively high maturity of organic matter. Vertical and horizontal temperature changes provide the grounds for the investigation of hasin evolution and thermal fluid-kinetics model. Fluorescence spectral characteristics of the organic inclusions indicate that oils and gases in the area studied probably have experienced two-stage or two-time migration. Micro-fluorescence research is one of the effective approaches to oil/source correlation and oil migration-stage determination. The abundance and occurrence of organic inclusions is one of the indicators of oil and gas abundance and accumulation in rock layers. With the help of other information, organic inclusions can provide the basis for the prospective assessment of oil and gas in clastic reservoir rocks.
文摘Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope(their δ18O values range from-0.3‰--0.1‰) and lighter oxygen isotope(their δ18O values range from-22.1‰--19.5‰).Generally,they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water.This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones,preserving intragranular volume and providing the mass basis for later disso-lution caused by acidic fluid flow to produce secondary porosity.Ferriferous calcites are characterized by relatively light carbon isotope with δ13C values ranging from-8.02‰ to-3.23‰,and lighter oxygen isotope with δ18O values ranging from-22.9‰ to-19.7‰,which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis.As the mid-late diagenetic products,ferriferous calcites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir.The late ankerite is relatively heavy in carbon isotope with δ13C values ranging from-1.92‰ to-0.84‰,and shows a wide range of variations in oxygen isotopic composition,with δ18O values ranging from-20.5‰ to-12.6‰.They are believed to have nothing to do with decarboxylation,but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation,and the alkaline diagenetic environment at the mid-late stage would promote this process.