期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Parameterization and Explicit Modeling of Cloud Microphysics:Approaches, Challenges, and Future Directions
1
作者 Yangang LIU Man-Kong YAU +2 位作者 Shin-ichiro SHIMA Chunsong LU Sisi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期747-790,共44页
Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resoluti... Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resolution limited-area models such as cloud-resolving models(CRMs)and large-eddy simulation(LES)models.Instead of giving a comprehensive review of existing microphysical parameterizations that have been developed over the years,this study concentrates purposely on several topics that we believe are understudied but hold great potential for further advancing bulk microphysics parameterizations:multi-moment bulk microphysics parameterizations and the role of the spectral shape of hydrometeor size distributions;discrete vs“continuous”representation of hydrometeor types;turbulence-microphysics interactions including turbulent entrainment-mixing processes and stochastic condensation;theoretical foundations for the mathematical expressions used to describe hydrometeor size distributions and hydrometeor morphology;and approaches for developing bulk microphysics parameterizations.Also presented are the spectral bin scheme and particle-based scheme(especially,super-droplet method)for representing explicit microphysics.Their advantages and disadvantages are elucidated for constructing cloud models with detailed microphysics that are essential to developing processes understanding and bulk microphysics parameterizations.Particle-resolved direct numerical simulation(DNS)models are described as an emerging technique to investigate turbulence-microphysics interactions at the most fundamental level by tracking individual particles and resolving the smallest turbulent eddies in turbulent clouds.Outstanding challenges and future research directions are explored as well. 展开更多
关键词 cloud microphysics PARAMETERIZATIONS systems theory bin microphysics particle-based microphysics particleresolved direct numerical simulations
下载PDF
Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL) 被引量:2
2
作者 史湘军 王斌 +1 位作者 Xiaohong LIU Minghuai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期868-883,共16页
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LA... A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account. 展开更多
关键词 two-moment cloud microphysics scheme atmospheric model
下载PDF
Impact of Different Cloud Microphysics Parameterization Schemes on Typhoon Intensity and Structure 被引量:1
3
作者 王晨稀 应明 《Journal of Tropical Meteorology》 SCIE 2021年第2期109-124,共16页
The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model ver... The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes.Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties,which increase with forecast time.Typhoon forecast uncertainty primarily affects intensity predictions,with significant differences in predicted typhoon intensity using various cloud microphysics schemes.Typhoon forecast uncertainty also affects the predicted typhoon structure.Greater typhoon intensity is accompanied by smaller vortex width,tighter vortex structure,stronger wind in the middle and lower troposphere,greater height of the strong wind region,smaller thickness of the eyewall and the outward extension of the eyewall,and a warmer warm core at upper levels of the eye.The differences among the various cloud microphysics schemes lead to different amounts and distributions of water vapor and hydrometeors in clouds.Different hydrometeors have different vertical distributions.In the radial direction,the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation.When the hydrometeor concentration is high and hydrometeors exist at lower altitudes,more precipitation often occurs.Both the vertical and horizontal winds are the strongest at the location of maximum precipitation.Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes.Among the eight cloud microphysics schemes investigated,typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate. 展开更多
关键词 cloud microphysics scheme TYPHOON INTENSITY STRUCTURE UNCERTAINTY
下载PDF
Semi-Idealized Modeling of Lightning Initiation Related to Vertical Air Motion and Cloud Microphysics 被引量:1
4
作者 fei wang yijun zhang +3 位作者 dong zheng liangtao xu wenjuan zhang qing meng 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期976-986,共11页
A three-dimensional charge^lischarge numerical model is used, in a semi-idealized mode, to simulate a thunder- storm cell. Characteristics of the granpel microphysics and vertical air motion associated with the lightn... A three-dimensional charge^lischarge numerical model is used, in a semi-idealized mode, to simulate a thunder- storm cell. Characteristics of the granpel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge^diseharge model is available, The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (WceH_m^x), with the adjusted regression coefficient R2 of ap- proximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (Zini), with the coeffi- cients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-oewm and below the upper edge of the granpel re- gion, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relation- ship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without char- ging/discharging schemes are available. The results can also help understand the environmental conditions at light- ning initiation sites. 展开更多
关键词 lightning initiation GRAUPEL ice crystal vertical air motion cloud microphysics
原文传递
The Importance of the Shape Parameter in a Bulk Parameterization Scheme to the Evolution of the Cloud Droplet Spectrum during Condensation
5
作者 Jun ZHANG Jiming SUN +2 位作者 Wei DENG Wenhao HU Yongqing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期155-167,共13页
The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parame... The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parameter in the commonly used bulk double-moment schemes, the cloud droplet spectra cannot reasonably be described during the condensation process. Therefore, a newly-developed triple-parameter condensation scheme with the shape parameter diagnosed through the number concentration, cloud water content, and reflectivity factor of cloud droplets can be applied to improve the evolution of the cloud droplet spectrum. The simulation with the new parameterization scheme was compared to those with a high-resolution Lagrangian bin scheme, the double-moment schemes in a parcel model, and the observation in a 1.5D Eulerian model that consists of two cylinders. The new scheme with the shape parameter varying with time and space can accurately simulate the evolution of the cloud droplet spectrum. Furthermore, the volume-mean radius and cloud water content simulated with the new scheme match the Lagrangian analytical solutions well, and the errors are steady, within approximately 0.2%. 展开更多
关键词 cloud microphysics parameterization cloud droplet spectrum double-moment scheme shape parameter
下载PDF
A Simulation Study on the Characteristics of Cloud Microphysics of Heavy Rainfall in the Meiyu Front 被引量:1
6
作者 鞠永茂 王汉杰 +1 位作者 钟中 宋帅 《Acta meteorologica Sinica》 SCIE 2009年第2期206-222,共17页
A heavy rainfall in the Meiyu front during 4-5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3-6) with different explicit cloud microphysical parameterization schemes. The characteristic... A heavy rainfall in the Meiyu front during 4-5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3-6) with different explicit cloud microphysical parameterization schemes. The characteristics of microphysical process of convective cloud are studied by the model outputs. The simulation study reveals that: (1) The mesoscale model MM5 with explicit cloud microphysical process is capable of simulating the instant heavy rainfall in the Meiyu front, the rainfall simulation could be improved signifi- cantly as the model resolution is increased, and the Goddard scheme is better than the Reisner or Schultz scheme. (2) The convective cloud in the Meiyu front has a comprehensive structure composed of solid, liquid and vapor phases of water, the mass density of water vapor is the largest one in the cloud; the next one is graupel, while those of ice, snow, rain water and the cloud water are almost same. The height at which mass density peaks for different hydrometeors is almost unchangeable during the heavy rainfall period. The mass density variation of rain water, ice, and graupel are consistent with that of ground precipitation, while that of water vapor in the low levels is 1-2 h earlier than the precipitation. (3) The main contribution to the water vapor budget in the atmosphere is the convergence of vapor flux through advection and convection, which provides the main vapor source of the rainfall. Besides the basic process of the auto-conversion of cloud water to rain water, there is an additional cloud microphysical process that is essential to the formation of instant heavy rainfall, the ice-phase crystals are transformed into graupels first and then the increased graupels mix with cloud water and accelerates the conversion of cloud water to rain water. The positive feedback mechanism between latent heat release and convection is the main cause to maintain and develop the heavy precipitation. 展开更多
关键词 MM5 Meiyu front torrential rain Goddard cloud microphysical process TRMM
原文传递
The Cloud Processes of a Simulated Moderate Snowfall Event in North China 被引量:3
7
作者 林文实 布和朝鲁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第2期235-242,共8页
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event i... The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20-21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow. 展开更多
关键词 SNOWFALL cloud microphysics parameterization cumulus parameterization MM5 North China
下载PDF
A STUDY OF THE INFLUENCE OF MICROPHYSICAL PROCESSES ON TYPHOON NIDA(2016) USING A NEW DOUBLE-MOMENT MICROPHYSICS SCHEME IN THE WEATHER RESEARCH AND FORECASTING MODEL 被引量:5
8
作者 李喆 张玉涛 +2 位作者 刘奇俊 付仕佐 马占山 《Journal of Tropical Meteorology》 SCIE 2018年第2期123-130,共8页
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium... The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required. 展开更多
关键词 Liuma microphysics scheme typhoon intensity cloud microphysics typhoon structure Weather Research and Forecasting model
下载PDF
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
9
作者 Yuan WANG Jonathan M. VOGEL +7 位作者 Yun LIN Bowen PAN Jiaxi HU Yangang LIU Xiquan DONG Jonathan H. JIANG Yuk L. YUNG Renyi ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期234-247,共14页
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative ... Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. 展开更多
关键词 aerosol-cloud-radiation interactions cloud-resolving model cloud microphysics and macrophysics precipita-tion
下载PDF
Evaluating the Impacts of Cloud Microphysical and Overlap Parameters on Simulated Clouds in Global Climate Models
10
作者 Haibo WANG Hua ZHANG +3 位作者 Bing XIE Xianwen JING Jingyi HE Yi LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2172-2187,I0023,I0024,共18页
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic... The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty. 展开更多
关键词 cloud fraction cloud microphysics scheme cloud radiative forcing vertical cloud overlap
下载PDF
Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China 被引量:9
11
作者 HUANG Yongjie CUI Xiaopeng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期389-400,共12页
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microp... High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water. 展开更多
关键词 torrential rainfall SICHUAN cloud microphysical processes numerical simulation
下载PDF
ANALYSING THE CLOUD MICRO-AND MACRO-PHYSICAL PROPERTIES OF THE CYCLONE EYE WALL AND ITS SURROUNDING SPIRAL CLOUD BANDS BASED ON CLOUDSAT AND TRMM DATA 被引量:2
12
作者 柴乾明 王文彩 黄忠伟 《Journal of Tropical Meteorology》 SCIE 2018年第2期253-262,共10页
In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five ... In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five tropical cyclones(TCs) in 2013. The results show that the ice-phase clouds of a mature TC are mainly above 5 km. With increasing altitude, the cloud droplet effective radius decreases, and the particle number concentration increases. Ice water content first increases and then decreases with increasing height. In the eye area, in addition to the well-known warm-core area, another warm core is also apparent around the eye at a height of 8 to 15 km. The horizontal distribution of precipitation is characterized by large-scale stratiform precipitation mixed with independent convective precipitation. The height of precipitation is mostly below 7.5 km, and the heavy rain is mainly below 5 km. When the peripheral convective clouds are strong enough, ice particles would be generated, thus providing conditions that are favourable for the formation of precipitation below. 展开更多
关键词 SYNOPTIC tropical cyclone cloud microphysical properties thermal structure cloud Sat TRMM
下载PDF
Aircraft Measurements of Cloud–Aerosol Interaction over East Inner Mongolia 被引量:4
13
作者 Yuhuan Lü Hengchi LEI Jiefan YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第8期983-992,共10页
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ... To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions. 展开更多
关键词 aircraft observation aerosol warm cloud microphysical properties
下载PDF
Macro-and Micro-physical Characteristics of Different Parts of Mixed Convective-stratiform Clouds and Differences in Their Responses to Seeding 被引量:1
14
作者 Dejun LI Chuanfeng ZHAO +5 位作者 Peiren LI Cao Liu Dianli GONG Siyao LIU Zhengteng YUAN Yingying CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2040-2055,共16页
This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in ... This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases. 展开更多
关键词 airborne Ka-band Precipitation Radar(KPR) mixed convective-stratiform clouds convective region stratiform region cloud seeding cloud microphysical properties
下载PDF
Scaling the Microphysics Equations and Analyzing the Variability of Hydrometeor Production Rates in a Controlled Parameter Space
15
作者 Chungu Lu Paul Schultz +1 位作者 and Gerald L Browning 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第4期619-650,共32页
A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becom... A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations. 展开更多
关键词 cloud microphysical parameterization scale analysis controlled parameter space numerical weather prediction
下载PDF
A Modified Double-Moment Bulk Microphysics Scheme Geared toward the East Asian Monsoon Region
16
作者 Jinfang YIN Donghai WANG +3 位作者 Guoqing ZHAI Hong WANG Huanbin XU Chongjian LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1451-1471,共21页
Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)schem... Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events. 展开更多
关键词 cloud and precipitation cloud microphysical processes double-moment microphysics scheme East Asia monsoon region(EAMR)
下载PDF
Study on Physical Characteristics of a Precipitation Cloud System in Hebei Province in Spring by Aircraft Observation
17
作者 Shuyi WANG Xiaoqing WANG +3 位作者 Xiaobo DONG Jiao FU Jiannan ZHANG Shengfen GAI 《Meteorological and Environmental Research》 CAS 2022年第3期28-36,共9页
Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018... Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets. 展开更多
关键词 Stratiform cloud Vertical sounding cloud microphysical characteristics cloud particle spectrum
下载PDF
Review and Microphysics of the Maximum Electricity Atmospheric Activity in the World: the Catatumbo Lightning (Venezuela)
18
作者 Nelson Falcón 《Journal of Atmospheric Science Research》 2021年第2期12-21,共10页
A review of the state of knowledge and phenomenology on the site of the greatest atmospheric electrical activity in the world,known as the Catatumbo Lightning,located southeast of Lake Maracaibo(Venezuela),is presente... A review of the state of knowledge and phenomenology on the site of the greatest atmospheric electrical activity in the world,known as the Catatumbo Lightning,located southeast of Lake Maracaibo(Venezuela),is presented.A microphysical model is presented to explain the charging process through electrical displacement within the cells of the cloud,incorporating the role of the self-polarization of ice and methane molecules as pyroelectric aerosol,which accounts for the phenomenology and is consistent with electrification in thunderstorm.It is concluded that the pyroelectric model allows to explain the phenomenology of the rapid discharges of the flashes in the Catatumbo lightning and could be applied in outer planetary lightning. 展开更多
关键词 Catatumbo lightning Atmospheric electricity Microphysical of cloud AEROSOLS METHANE
下载PDF
Effects of sea surface temperature,cloud radiative and microphysical processes,and diurnal variations on rainfall in equilibrium cloud-resolving model simulations
19
作者 蒋哲 李小凡 +1 位作者 周玉淑 高守亭 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期308-315,共8页
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolvin... The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. 展开更多
关键词 rain rate sea surface temperature radiative and microphysical effects of ice and water clouds diurnal variation
下载PDF
Improvement of cloud microphysical parameterization and its advantages in simulating precipitation along the Sichuan-Xizang Railway
20
作者 Xiaoqi XU Zhiwei HENG +6 位作者 Yueqing LI Shunjiu WANG Jian LI Yuan WANG Jinghua CHEN Peiwen ZHANG Chunsong LU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第3期856-873,共18页
The Sichuan-Xizang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause o... The Sichuan-Xizang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause of these disasters;therefore,accurate simulation of the precipitation in this region is highly important. In this study, the descriptions for uncertain processes in the cloud microphysics scheme are improved;these processes include cloud droplet activation, cloud-rain autoconversion, rain accretion by cloud droplets, and the entrainment-mixing process. In the default scheme, the cloud water content of different sizes corresponds to the same cloud droplet concentration, which is inconsistent with the actual content;this results in excessive cloud droplet size, unreasonable related conversion rates of microphysical process(such as cloud-rain autoconversion), and an overestimation of precipitation. Our new scheme overcomes the problem of excessive cloud droplet size. The processes of cloudrain autoconversion and rain accretion by cloud droplets are similar to the stochastic collection equation, and the mixing mechanism of cloud droplets is more consistent with that occurred during the actual physical process in the cloud. Based on the new and old schemes, multiple precipitation processes in the flood season of 2021 along the Sichuan-Xizang Railway are simulated, and the results are evaluated using ground observations and satellite data. Compared to the default scheme, the new scheme is more suitable for the simulation of cloud physics, reducing the simulation deviation of the liquid water path and droplet radius from 2 times to less than 1 time and significantly alleviating the overestimation of precipitation intensity and range of precipitation center. The average root-mean-square error is reduced by 22%. Our results can provide a scientific reference for improving precipitation forecasting and disaster prevention in this region. 展开更多
关键词 The Sichuan-Xizang Railway cloud microphysics PRECIPITATION Model improvement
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部