In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deployi...In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.展开更多
In accordance with the specific deployment way of infrastructure and data exchanging technology in the Internet of vehicles(IoV),the acquiring and calculating method for three basic traffic flow parameters in IoV scen...In accordance with the specific deployment way of infrastructure and data exchanging technology in the Internet of vehicles(IoV),the acquiring and calculating method for three basic traffic flow parameters in IoV scenarios,including traffic flow,speed and density,was researched.Considering the complexity of traffic flow and fuzziness of human thinking,fuzzy c-means clustering algorithm based on the genetic algorithm(GA-FCM) was adopted in soft classification of urban road traffic conditions.Genetic algorithm(GA) introduced into fuzzy clustering could avoid fuzzy c-means(FCM) algorithm converging to the local infinitesimal point,which made the cluster result more precise.By means of computer simulation,data exchanging environment in IoV was imitated,and then test data set was divided into four parts.The simulation indicates that the identification method is feasible and effective for urban road traffic conditions in IoV scenarios.展开更多
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473077,61473078)+4 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)the Fundamental Research Funds for the Central Universities,China(No.15D110423)
文摘In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.
基金the Humanity and Social Science Youth Foundation of Ministry of Education in China(No.12YJC630200)Natural Science Foundations of Gansu Province in China(Nos.145RJZA190,1308RJYA042)the Social Science Planning Project of Gansu Province in China(No.13YD066)
文摘In accordance with the specific deployment way of infrastructure and data exchanging technology in the Internet of vehicles(IoV),the acquiring and calculating method for three basic traffic flow parameters in IoV scenarios,including traffic flow,speed and density,was researched.Considering the complexity of traffic flow and fuzziness of human thinking,fuzzy c-means clustering algorithm based on the genetic algorithm(GA-FCM) was adopted in soft classification of urban road traffic conditions.Genetic algorithm(GA) introduced into fuzzy clustering could avoid fuzzy c-means(FCM) algorithm converging to the local infinitesimal point,which made the cluster result more precise.By means of computer simulation,data exchanging environment in IoV was imitated,and then test data set was divided into four parts.The simulation indicates that the identification method is feasible and effective for urban road traffic conditions in IoV scenarios.